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Abstract

Maximum likelihood estimates of parameters of some spatial models require the

computation of the log-determinant of positive-de®nite matrices of the form Iÿ aD,

where D is a large, sparse matrix with eigenvalues in �ÿ1; 1� and where 0 < a < 1. With

extremely large matrices the usual direct methods of obtaining the log-determinant re-

quire too much time and memory. We propose a Monte Carlo estimate of the log-de-

terminant. This estimate is simple to program, very sparing in its use of memory, easily

computed in parallel and can estimate log det�Iÿ aD� for many values of a simulta-

neously. Using this estimator, we estimate the log-determinant for a 1,000,000 �
1,000,000 matrix D, for 100 values of a, in 23.1 min on a 133 MHz pentium with 64 MB of

memory using Matlab. Ó 1999 Published by Elsevier Science Inc. All rights reserved.

Keywords: Dirichlet distribution; Eigenvalues; Maximum likelihood; Normalizing constant; Spatial

autocorrelation; Spatial statistics

1. Motivation

Determinants arise out of a number of contexts in applied linear algebra.
Our particular application arises out of the method of maximum likelihood
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that lies at the heart of statistics. The multivariate maximum likelihood
function involves the determinant of the variance±covariance matrix (or
equivalently some power of the variance±covariance matrix such as ÿ1; 1=2,
or ÿ1=2). For non-independent data, this positive-de®nite matrix can have
zero entries in any non-diagonal position and positive elements on the main
diagonal. This matrix has dimension of n� n, where n represents the number
of observations. Actual applications create large matrices. For example, the
US Census Bureau collects data at over 250,000 census block group loca-
tions.

The canonical way of computing determinants requires the use of the
Cholesky decomposition for the symmetrical variance±covariance matrix or
perhaps the LU decomposition for the case of the variance±covariance matrix
to the one-half power (potentially asymmetric). Fortunately, many applica-
tions involve rather sparse matrices (Barry and Pace, 1997, and Pace and
Barry, 1998). However, the direct sparse matrix methods used to compute the
decompositions depend upon a favorable ordering of the elements to achieve
computational speed. Unfortunately, for statistical applications as n rises, it
appears di�cult to always achieve favorable ordering. We have observed the
computation times rise at a rate substantially faster than n, a factor we at-
tribute to the di�culty of ®nding one ordering appropriate for an increasingly
heterogeneous collection of patterns in the data. The direct decompositions
attempt to provide exact estimates of determinants. However, statistical ap-
plications may not require such exactitude. This suggests the route of ®nding
an approximate estimate of the determinant, a route we follow in this paper.

Gri�th and Sone (1995, p. 168) argued persuasively for the use of ap-
proximations of the determinant:

. . . there are three main reasons for wanting to approximate the normal-
izing constant term. First, ®nding the determinant of a large matrix may
either require considerable computer resources, or not be possible, and
may well be subject to numerical inaccuracies. Second, repeatedly calcu-
lating the logarithm of this determinant, as q̂ [our a] changes, for each of
a number of non-linear least squares iterations itself will be slow, and
consumptive of computer resources. And, third, freeing spatial scientists
from dealing with the complicated and awkward calculations that accom-
pany spatial statistics will allow (1) the general, less specialized commer-
cial software packages to be employed, and (2) much more e�ort to be
devoted to substantive aspects of research problems.

Our application gives rise to the problem of estimating the log det�Iÿ lM�
where the eigenvalues of lM are real and in �ÿ1; 1�. Without loss of generality,
after a suitable rescaling, this is equivalent to estimation of log det�Iÿ aD�
where a is in �ÿ1; 1� and D has real eigenvalues in �ÿ1; 1�.
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Ideally, we would like to obtain the log det�Iÿ aD� for all values of a over a
domain such as �0; 1�. This greatly facilitates working with the log-likelihood
function. Clearly, the direct methods require multiple evaluations to provide
enough points to approximate the log det�Iÿ aD� for all values of a. This
further exacerbates the computational di�culties. Fortunately, the method
introduced here can estimate log det�Iÿ aD� simultaneously for many values
of a. This Monte Carlo method provides not only an estimate of
log det�Iÿ aD�, but also con®dence bounds for the precision of estimation.
The user can employ the algorithm interactively by conducting an initial run,
examining the precision, and continuing or discontinuing computations de-
pending upon whether the estimates yield the desired precision. Aggregating
the trials from previous runs continually increases the precision of estimation.
Naturally, the user can program a formal stopping rule as well. Hence, this
method allows users to minimize computational time subject to their desired
precision. It easily lends itself to parallel processing.

Relative to existing approximations, this one seems much more easily scaled
for very large problems. As mentioned later, Martin (1993) approximation
memory requirements explode as n becomes large. Gri�th and Sone (1995)
require computation of at least one eigenvalue and a small set of determinants
for a calibration of their approximation. Hence, their approximation reduces
the computational requirements substantially, but does not address the issue of
how to compute log-determinants for large irregular matrices prior to the
calibration of their method.

Section 2 introduces the Monte Carlo estimate of the log-determinant and
the associated con®dence intervals, presents the basic algorithm, and discusses
issues relevant to its implementation. Section 3 estimates the log-determinant
of a 1; 000; 000� 1; 000; 000 matrix and demonstrates the salient advantages of
the Monte Carlo estimator. Finally, Section 4 concludes with the key results.

2. The approximation

Suppose we are faced with the problem of approximating the log det�Iÿ
aD� for some n� n sparse matrix D that has real eigenvalues in �ÿ1; 1�, and
where ÿ1 < a < 1. We ®rst generate p independent random variables:

Vi � ÿn
Xm

k�1

x0iD
kxi

x0ixi

ak

k
; i � 1; . . . ; p;

where xi � Nn�0; I�; xi independent of xj if i 6� j.
Then we form the interval

�V ÿ F ; V � F �;
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where

F � nam�1

�m� 1��1ÿ a� � 1:96

���������������������������
s2�V1; . . . ; Vp�

p

s
:

The interval �V ÿ F ; V � F � is an asymptotic 95% con®dence interval for
log det�Iÿ aD�. We select the ``tuning constants'' m and p to give the desired
degree of approximation �F �.

Proof. By the triangle inequality:

jV ÿ log det�Iÿ aD�j6 jV ÿ EV j � jEV ÿ log det�Iÿ aD�j:
The sampling distribution of a mean of independent, ®nite variance random
variables gives us

P jV ÿ EV j6 1:96

���������������������������
s2�V1; . . . ; Vp�

p

s !
� 0:95:

The bound for the term jEV ÿ log det�Iÿ aD�j is given in the next theo-
rem. (

Theorem

jEV ÿ log det�Iÿ aD�j6 nam�1

�m� 1��1ÿ a� :

Proof. Start with the power series expansion of the matrix function
ÿ log�Iÿ aD�:

ÿ log�Iÿ aD� �
X1
k�1

Dkak

k
�
Xm

k�1

Dkak

k
�
X1

k�m�1

Dkak

k
:

Now, the trace of log�Iÿ aD� isXn

i�1

log�1ÿ akD;i� � log det�Iÿ aD�:

The nice property tr�cA� � tr�dB� � tr�cA� dB� has the consequence:

ÿ log det�Iÿ aD� � ÿtr� log�Iÿ aD�� �
Xm

k�1

tr�Dk�ak

k
�
X1

k�m�1

tr�Dk�ak

k

6
Xm

k�1

tr�Dk�ak

k
�
X1

k�m�1

tr�Dk�ak

m� 1
:

The expansion of log det�Iÿ aD� in terms of the trace of Dk is the Martin
expansion (Martin, 1993).
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The ®rst term on the right-hand side is just the expected value of Vi :

EV � EVi � E

�
ÿ n
Xm

k�1

x0i�Dk�xi

x0ixi
�a

k

k
�
�
�
Xm

k�1

tr�Dk�ak

k
:

from Result 2 in Appendix A.
Finally, recognizing that n P jtr�Dk�j, we get

jEV ÿ log det�Iÿ aD�j �
X1

k�m�1

tr�Dk�ak

m� 1

�����
�����6 n

m� 1

X1
k�m�1

ak

�����
�����

� njajm�1

�m� 1��1ÿ a� : (

The Algorithm

v 0

x random:normal �n�
c x

for k � 1 to m

c Dc

v nak�x0c�=k � v

end

v v=�x0 x�
This is repeated p times to obtain the Vi . If the number of non-zero entries in D

is f , then each multiplication by a vector takes time of order f . Each real-
ization of Vi then takes time proportional to fm, and computing the whole suite
of estimators will take fmp.

If we have a sequence of increasingly large sparse matrices, with ®ll f in-
creasing linearly with n, then the required time will be order nmp.

If we wish to keep the margin of error constant, we will need m � O� log n�
and p � O�n�. Thus the time required will be of order n2 log n. Since the log-
likelihood itself tends at O�n�, for many applications it is enough that the
margin of error (F) be o�n�. It is su�cient that p � O�1� and m � X� log n� to
get F =n to shrink to zero. In this case the time requirement of the algorithm
only grows at order n log n.

Memory requirement: An advantage of this method is its extremely frugal
memory requirement. The algorithm essentially only requires the storage of
the sparse matrix D, space for two n� 1 vectors, and a very small amount of
additional space for storing the intermediate (scalar) values. Unlike most sparse
algorithms, such as the multiplication of sparse matrices, LU decomposition,
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etc., this algorithm does not su�er from ®ll-in: the storage required does not
increase as computations are performed. For instance, using the (truncated)
Martin expansion directly to estimate the log determinant is problematic for
large matrices, since the number of non-zero entries in Dk can grow explosively
with k. The resulting sparse matrices can become too large to work with e�-
ciently, and each successive matrix multiplication DDk becomes increasingly
expensive (Gri�th and Sone, 1995, p. 171).

Miscellanea: Using the Monte Carlo algorithm has some additional ad-
vantages under some circumstances:
· By using a modi®ed algorithm, the log det�Iÿ aD� can be computed simul-

taneously for a set of as; �a1; . . . ; aq�. Very little additional time or memory is
required. For each realization of Vi the vector �x0iDxi; . . . ; x0iD

kxi� needs to be
computed. Then it can be multiplied by a k � q matrix with i; jth entry equal
to aj

i=j. The calculation of the vector of quadratic forms takes almost all of
the computational e�ort, thus large numbers of as can be considered without
appreciably increasing the time and memory requirements of the algorithm.

· The Monte Carlo algorithm is a perfect candidate for parallel computation.
Di�erent processors could simultaneously compute estimators Vi indepen-
dently, without any need to communicate at all. The computed Vi would
then be combined after all of the computations were ®nished. No modi®ca-
tion of the code would be required.

· The algorithm is easy to encode in a language such as C or Fortran. The al-
gorithm only uses one type of sparse matrix operation, requiring multiplica-
tion of a matrix by a vector on the right.

3. A test of the estimator of the log-determinant

To examine the performance of the Monte Carlo determinant estimates as
well as their con®dence bounds, we conducted a Monte Carlo experiment in-
volving a matrix with known determinants. Speci®cally, we employed a spatial
weight matrix specifying the four nearest neighbors (based on Euclidean dis-
tances) to each of 3,107 countries in the US as previously analyzed by Pace and
Barry (1998) in the context of examining spatial aspects of voting. Pace and
Barry computed the exact log-determinant using various direct techniques
which still work well for this size matrix (but these fail to work for the huge
matrices discussed later). Each row has four non-zero elements which sum to 1.

In the Monte Carlo experiment, we computed 250 trials. In each trial we
used 500 iterations of 50 terms in the expansion for computing the Monte
Carlo log-determinants. For each trial we computed the point estimate of the
log-determinant and its 95% con®dence bounds. Table 1 shows the true log-
determinant, the average log-determinant across the 250 trials, the standard
deviation of the estimated log-determinant across the 250 trials, and the
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Table 1

True and average estimated log-determinants with empirical con®dence interval coverage based on

250 trials

a lnjIÿ aDj (True) lnjIÿ aDj (Estimated) r̂lnÿdet Empirical coverages

0.0050 ÿ0.0082 ÿ0.0084 0.0087 0.9400

0.0250 ÿ0.2062 ÿ0.2071 0.0437 0.9400

0.0450 ÿ0.6704 ÿ0.6721 0.0788 0.9400

0.0650 ÿ1.4040 ÿ1.4065 0.1141 0.9440

0.0850 ÿ2.4105 ÿ2.4137 0.1495 0.9440

0.1050 ÿ3.6935 ÿ3.6975 0.1852 0.9440

0.1250 ÿ5.2572 ÿ5.2620 0.2210 0.9440

0.1450 ÿ7.1061 ÿ7.1116 0.2570 0.9440

0.1650 ÿ9.2452 ÿ9.2515 0.2933 0.9440

0.1850 ÿ11.6798 ÿ11.6867 0.3299 0.9440

0.2050 ÿ14.4156 ÿ14.4233 0.3667 0.9440

0.2250 ÿ17.4590 ÿ17.4674 0.4038 0.9440

0.2450 ÿ20.8168 ÿ20.8259 0.4412 0.9440

0.2650 ÿ24.4963 ÿ24.5061 0.4790 0.9400

0.2850 ÿ28.5057 ÿ28.5162 0.5172 0.9400

0.3050 ÿ32.8534 ÿ32.8646 0.5557 0.9400

0.3250 ÿ37.5491 ÿ37.5609 0.5947 0.9480

0.3450 ÿ42.6027 ÿ42.6152 0.6341 0.9440

0.3650 ÿ48.0254 ÿ48.0385 0.6740 0.9440

0.3850 ÿ53.8293 ÿ53.8430 0.7144 0.9440

0.4050 ÿ60.0273 ÿ60.0416 0.7554 0.9440

0.4250 ÿ66.6338 ÿ66.6486 0.7970 0.9440

0.4450 ÿ73.6641 ÿ73.6795 0.8392 0.9400

0.4650 ÿ81.1354 ÿ81.1513 0.8822 0.9400

0.4850 ÿ89.0669 ÿ89.0826 0.9258 0.9400

0.5050 ÿ97.4770 ÿ97.4939 0.9703 0.9400

0.5250 ÿ106.3902 ÿ106.4075 1.0157 0.9400

0.5450 ÿ115.8307 ÿ115.8484 1.0619 0.9400

0.5650 ÿ125.8261 ÿ125.8441 1.1092 0.9400

0.5850 ÿ136.4069 ÿ136.4253 1.1576 0.9360

0.6050 ÿ147.6075 ÿ147.6260 1.2073 0.9360

0.6250 ÿ159.4661 ÿ159.4849 1.2582 0.9360

0.6450 ÿ172.0261 ÿ172.0450 1.3106 0.9360

0.6650 ÿ185.3367 ÿ185.3556 1.3645 0.9400

0.6850 ÿ199.4539 ÿ199.4728 1.4203 0.9400

0.7050 ÿ214.4422 ÿ214.4610 1.4780 0.9400

0.7250 ÿ230.3766 ÿ230.3951 1.5379 0.9400

0.7450 ÿ247.3444 ÿ247.3626 1.6002 0.9400

0.7650 ÿ265.4495 ÿ265.4671 1.6654 0.9440

0.7850 ÿ284.8160 ÿ284.8329 1.7338 0.9440

0.8050 ÿ305.5950 ÿ305.6110 1.8058 0.9440

0.8250 ÿ327.9738 ÿ327.9886 1.8823 0.9440

0.8450 ÿ352.1893 ÿ352.2021 1.9640 0.9440

0.8650 ÿ378.5493 ÿ378.5587 2.0519 0.9440

0.8850 ÿ407.4682 ÿ407.4690 2.1478 0.9840
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empirical coverage of the con®dence bounds of the true value of the log-de-
terminant for varying values of a.

As Table 1 reveals, the estimated log-determinants come very close to their
true values in repeated sampling. Moreover, these estimates do not show high
variability. For example, the estimated log-determinant at a of 0.6050 is
ÿ147:626 with a standard error of 1.2073. The log-determinant for an a �
0:5850 is ÿ136:4253; a di�erence of 11.201 or 9.237 standard errors from the
log-determinant at a � 0:6050. Hence, these estimated log-determinants seem
precise enough for most statistical purposes.

The con®dence bound estimates also perform well with a minimum estimated
coverage of 93.6%. The 95% lower bound of the coverage of a 95% con®dence
interval would be 93% given 250 trials (the 95% con®dence interval for the
coverage is simply p̂ � 2

���������������������������
p̂�1ÿ p̂�=250

p
, where p̂ is the proportion of the time

that the Monte Carlo con®dence interval for the determinant included the true
value of the determinant). The con®dence bounds become more conservative at
the higher levels of a due to the error bounds employed. Generally speaking,
histograms of the estimated log-determinants show a reasonably normal shape
and have studentized ranges consistent with a normal distribution.

4. Estimating the log-determinant of a million by million matrix

To illustrate the utility of these techniques, we undertake the challenging
task of computing the approximate determinant of a 1; 000; 000� 1; 000; 000
matrix. We let D ��1=2��P1 � P2� where P1;P2 represent arbitrary permuta-
tion matrices. The ®rst 100,000 rows of both have randomly placed elements
while the next 900,000 rows have a band structure. We adopted this structure
to easily simulate the case where most of the elements are clustered around the
diagonal, but some are scattered randomly in the matrix. While the resultant
matrix is quite sparse, it provides quite a challenge to direct methods that
depend upon a favorable ordering. The combination of two random permu-
tation matrices creates problems for such algorithms.

Table 1 (continued)

a lnjIÿ aDj (True) lnjIÿ aDj (Estimated) r̂lnÿdet Empirical coverages

0.9050 ÿ439.5286 ÿ439.5041 2.2538 1.0000

0.9250 ÿ475.6031 ÿ475.4931 2.3733 1.0000

0.9450 ÿ517.1235 ÿ516.7018 2.5120 1.0000

0.9650 ÿ566.8242 ÿ565.1713 2.6796 1.0000

0.9850 ÿ631.8478 ÿ624.3757 2.8945 1.0000

0.9950 ÿ678.9991 ÿ659.7821 3.0300 1.0000

48 R.P. Barry, R.K. Pace / Linear Algebra and its Applications 289 (1999) 41±54



We apply the methods introduced earlier to this problem. Speci®cally, we set
p, the number of realizations of the random variable Vi , to 20 and set m, the
length of the truncated series, to 20. Using the Matlab interpreted language
(Gilbert et al., 1992) on a 133 MHz Pentium computer with 64 MB of memory,
it took only 23.1 min to perform the computations. Note, Matlab only allows
the use of the double precision data type, which slows down the computations
relative to single precision. A compiled language with a single precision ¯oating
point data type should perform much faster.

Table 2 presents the estimated determinants with the lower and upper
endpoints of the 95% upper con®dence intervals as a function of a, the dif-
ferencing parameter. In repeated trials, the random interval should cover the
true value of the determinant in 95% of the trials. However, since the con-
struction of these intervals involves an upper bound, for larger values of a these
intervals should act conservatively and have greater coverage than 95%. As one
would expect, the magnitudes of the estimated log-determinants on a 1,000,000
� 1,000,000 matrix become rather large in the negative direction as the matrix
becomes ever closer to singularity �a � 1�.

An outstanding feature of the estimates is the non-overlap between the
con®dence regions of a and the estimated log-determinant for adjacent values
of a over the interval �0:005; 0:835�. For example, the lower value of the con-
®dence interval for a � 0:835 is ÿ235506:75 while the estimated log-determi-
nant for a � 0:845 is ÿ237380:58. Provided the application tolerates variations
in a of 0:01, the precision of the log-determinant estimation would exceed the
application's requirements over the interval �0:005; 0:835�. For a in the range
(0.4, 0.6) the ®t is very good, and a values in this range are common in ap-
plications. For the statistical applications envisioned, such a small lack of
precision would rarely pose a problem.

The monumental trade-o� of computation time for reduced precision ap-
pears quite attractive for many applications. Moreover, this trade-o� consti-
tutes a continuous choice under the user's control. If the user wishes to obtain
more precision after inspecting an initial run such as present in Table 2, adding
more trials should decrease the width of the con®dence intervals at the square
root of the total number of trials, p. For example, adding an additional 60 trials
should double the precision of estimation. If a user requires more precision for
larger values of a (e.g., a > 0:9), increasing m should help. For the larger values
of a, the value of m of 20 used in Table 2 leads to large upper bounds, F , for
such values. Fortunately, most empirical applications have a between 0.4 and
0.6, and few applications having a > 0:9. Again, inspection of an initial run
allows a user to calibrate the experiment to provide just the precision needed.

Finally, as Table 2 demonstrates, the algorithm provides simultaneous es-
timates of the log-determinant for many choices of a. Hence, the method
amortizes the ®xed expense of computation over a number of evaluations
relative to the usual direct methods. Not only does this greatly save time, but it
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Table 2

Log-determinant estimates and con®dence bounds versus a

a Lower con®dence bound Estimate of log-determinant Upper con®dence bound

0.005 ÿ6.37 ÿ4.12 ÿ1.88

0.025 ÿ144.34 ÿ133.10 ÿ121.86

0.045 ÿ462.50 ÿ442.26 ÿ422.02

0.065 ÿ961.42 ÿ932.18 ÿ902.94

0.085 ÿ1642.00 ÿ1603.74 ÿ1565.48

0.105 ÿ2505.48 ÿ2458.19 ÿ2410.89

0.125 ÿ3553.44 ÿ3497.09 ÿ3440.73

0.145 ÿ4787.82 ÿ4722.37 ÿ4656.92

0.165 ÿ6210.91 ÿ6136.33 ÿ6061.76

0.185 ÿ7825.41 ÿ7741.67 ÿ7657.92

0.205 ÿ9634.41 ÿ9541.45 ÿ9448.49

0.225 ÿ11641.44 ÿ11539.20 ÿ11436.97

0.245 ÿ13850.46 ÿ13738.89 ÿ13627.32

0.265 ÿ16265.94 ÿ16144.97 ÿ16024.00

0.285 ÿ18892.87 ÿ18762.41 ÿ18631.96

0.305 ÿ21736.78 ÿ21596.75 ÿ21456.73

0.325 ÿ24803.82 ÿ24654.14 ÿ24504.46

0.345 ÿ28100.82 ÿ27941.39 ÿ27781.95

0.365 ÿ31635.33 ÿ31466.02 ÿ31296.71

0.385 ÿ35415.70 ÿ35236.39 ÿ35057.09

0.415 ÿ41567.70 ÿ41373.16 ÿ41178.61

0.425 ÿ43751.94 ÿ43552.24 ÿ43352.54

0.435 ÿ46005.31 ÿ45800.42 ÿ45595.53

0.445 ÿ48329.36 ÿ48119.24 ÿ47909.11

0.455 ÿ50725.70 ÿ50510.29 ÿ50294.88

0.465 ÿ53196.01 ÿ52975.28 ÿ52754.55

0.475 ÿ55742.09 ÿ55515.99 ÿ55289.88

0.485 ÿ58365.84 ÿ58134.31 ÿ57902.78

0.495 ÿ61069.24 ÿ60832.23 ÿ60595.22

0.505 ÿ63854.42 ÿ63611.87 ÿ63369.31

0.515 ÿ66723.59 ÿ66475.43 ÿ66227.27

0.525 ÿ69679.13 ÿ69425.29 ÿ69171.45

0.535 ÿ72723.53 ÿ72463.93 ÿ72204.32

0.545 ÿ75859.46 ÿ75594.00 ÿ75328.53

0.555 ÿ79089.74 ÿ78818.30 ÿ78546.85

0.565 ÿ82417.37 ÿ82139.81 ÿ81862.24

0.575 ÿ85845.56 ÿ85561.70 ÿ85277.83

0.585 ÿ89377.71 ÿ89087.33 ÿ88796.95

0.605 ÿ96768.83 ÿ96464.43 ÿ96160.04

0.625 ÿ104623.34 ÿ104302.83 ÿ103982.31

0.645 ÿ112979.30 ÿ112638.81 ÿ112298.32

0.665 ÿ121881.74 ÿ121514.10 ÿ121146.46

0.685 ÿ131385.27 ÿ130977.05 ÿ130568.82

0.705 ÿ141557.91 ÿ141083.95 ÿ140610.00

0.725 ÿ152487.51 ÿ151900.91 ÿ151314.31

0.745 ÿ164292.49 ÿ163506.07 ÿ162719.64
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allows the precomputation of all the needed log-determinants prior to use at
times that do not con¯ict with other processes. In addition, it avoids the ne-
cessity of continually switching from one computer program to another. Ef-
fectively, it allows the division of a problem into the stage of computing all the
needed log-determinants and the stage of employing these in the computation
of some objective of interest.

Appendix A

A series of results on the properties of Rayleigh's quotient (Strang, 1976)

x0Ax

x0x
for an n� n matrix A and x � N�0; I�:

Result 1. For any n� n (real) symmetric matrix A with eigenvalues kA;1; . . . ; kA;n

(these are real because A is symmetric),

x0Ax

x0x
� W1kA;1 � � � � � WnkA;n;

where W1; . . . ;Wn are coe�eients with the multivariate Dirichlet�1=2� distribu-
tion.

Proof. Schur's lemma applied to a real symmetric matrix tells us that we can
®nd an orthonormal coordinate system in which UAU0 is diagonal with the
eigenvalues of A on the diagonal (Horn and Johnson, 1985, p. 82). Because the
multivariate distribution N (0,I) is rotationally symmetric, after rotation to this
orthonormal coordinate system the distribution is still N�0; I�. Thus

Table 2 (continued)

a Lower con®dence bound Estimate of log-determinant Upper con®dence bound

0.765 ÿ177140.31 ÿ175992.55 ÿ174844.78

0.785 ÿ191280.04 ÿ189472.17 ÿ187664.30

0.805 ÿ207101.48 ÿ204080.30 ÿ201059.12

0.825 ÿ225245.65 ÿ219982.10 ÿ214718.54

0.835 ÿ235506.75 ÿ228479.81 ÿ221452.88

0.845 ÿ246818.71 ÿ237380.58 ÿ227942.45

0.865 ÿ273826.62 ÿ256527.16 ÿ239227.71

0.885 ÿ310115.02 ÿ277735.31 ÿ245355.60

0.905 ÿ363586.40 ÿ301398.27 ÿ239210.14

0.925 ÿ452126.97 ÿ328012.17 ÿ203897.37

0.945 ÿ622777.31 ÿ358206.02 ÿ93634.72

0.965 ÿ1037317.51 ÿ392780.59 251756.34

0.985 ÿ2744759.77 ÿ432758.93 1879241.92

0.995 ÿ9028192.04 ÿ455170.70 8117850.64
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x0Ax � z2
1kA;i � � � � � z2

nkA;i;

where �z1; . . . ; zn� are N�0; I�. Then

x0Ax

x0x
� z2

1kA;1 � � � � � z2
nkA;n

z2
1 � � � � � z2

n

;

where �z1; . . . ; zn� is N�0; I�. This fraction can be rewritten

z2
1Pn

i�1z2
i
kA;1 � z2

2Pn
i�1z2

i
kA;2 � � � � � z2

nPn
i�1z2

i
kA;n:

As each z2
i is chi-square with one degree of freedom, and z2

i is independent of z2
j

for i 6� j, the coe�cients W1; . . . ;Wn have the Dirichlet�1=2� distribution
(Johnson and Kotz, 1972, p. 231).

The mean, variance and covariance of n-variate Dirichlet�1=2� random
variables are:

EWi � 1

n
; Var�Wi� � �1=2��n=2ÿ 1=2�

�n=2�2�n=2� 1� �
2�nÿ 1�
n2�n� 2� ;

Cov�Wi;Wj� � ÿ2

n2�n� 2�
(Johnson and Kotz, 1972, p. 233). For additional information on the Dirichlet
distribution, see Narayanan (1990). (

Result 2. For any real n� n matrix A and x �Nn�0; I�

E
x0Ax

x0x
� tr�A�=n:

Proof. For A symmetric we can use Result 1 to get

E
x0Ax

x0x
� EW1kA;1 � � � � � EWnkA;n � �kA;1 � � � � � kA;n�=n � tr�A�=n

If A is not symmetric, then consider B � �1=2��At � A�. Clearly B is symmetric
and has the same trace as A. However, for any vector c; c0Ac � c0Bc. Thus
x0Ax=x0x must have the same distribution as x0Bx=x0x and therefore is an
unbiased estimator of tr�A�=n. (

Result 3. For real symmetric A,

Var
x0Ax

x0x
� 2VAR�k�

n� 2
;

where VAR�k� is the population variance of the eigenvalues of A:
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VAR�k� � 1

n

Xn

i�1

�kA;i ÿ tr�A�=n�2:

Proof.

Var
x0Ax

x0x
�
Xn

i�1

Var�Wi�k2
A;i �

XX
i6�j

Cov�Wi ;Wj�kA;ikA;j:

Substituting the corresponding variance and covariance formulas gives:Xn

i�1

2nÿ 1

n2�n� 2� k
2
A;i ÿ

XX
i6�j

2

n2�n� 2� kA;ikA;j

� 2

n� 2

Pn
i�1k

2
A;i ÿ �1=n�Pn

i�1

Pn
j�1kA;ikA;j

n

2664
3775 � 2V �kA�

n� 2
: (

We can use this result to ®nd the approximate variance of Vi because, for m
large, Var�Vi� � Var�nx0 log�Iÿ aD�x=x0x�.

Result 4.

Var
nx0 log�Iÿ aD�x

x0x

� �
6 n2�maxi log�1ÿ akD;i� ÿmini log�1ÿ akD;i��2

2�n� 2� :

Proof. The matrix Var�nx0 log�Iÿ aD�x=x0x� has (real) eigenvalues
log�1ÿ akD;1�; . . . ; log�1ÿ akD;n�. For any set of real numbers
a1; . . . ; an;VAR�a1; . . . ; an�6 �range�a1; . . . ; an��2=4. Then

Var
nx0 log�Iÿ aD�x

x0x

� �
� 2n2VAR� log�1ÿ akD;i��

n� 2

6 n2�maxi log�1ÿ akD;i� ÿmini log�1ÿ akD;i��2
2�n� 2�

follows from Result 3. (

This implies a ®nite variance for the Vi when the eigenvalues of symmetric D

are real and in the range �ÿ1; 1�, and a in the range �ÿ1; 1�. For the worse case,
where D has eigenvalues at 1 and at ÿ1, the variance of Vi is bounded above by

n2� log�1� jaj� ÿ log�1ÿ jaj��2
2�n� 2� :

Finally, we must ensure that the matrix D has eigenvalues in �ÿ1; 1�. One way
to do so is to use row stochastic matrices, which have spectral radius one (Horn
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and Johnson, 1985). Another way is to ®nd an upper bound for the spectral
radius and divide the matrix by the upper bound. For binary matrices that are
the adjacency matrix of a planar graph the spectral radius cannot exceed 3�����������������

8nÿ 15
p

=2 (Boots and Royal, 1991). The spectral radius of a matrix can also
be computed using iterative methods (Horn and Johnson, 1985).

References

Barry, R.P., Pace, R.K., 1997. Kriging with large data sets using sparse matrix techniques. Comm.

Statist. Simulation Comput. 26 (2), 619±629.

Boots, B.N., Royal, G.F., 1991. A conjecture on the maximum value of the principal eigenvalue of

a planar graph. Geographical Anal. 23, 226±282.

Gilbert, J.R., Moler, C., Schreiber, R., 1992. Sparse matrices in matlab: Design and implemen-

tation. SIAM J. Matrix Anal. 13 (1), 333±356.

Gri�th, D.A., Sone, A., 1995. Trade-o�s associated with normalizing constant computational

simpli®cations for estimating spatial statistical models. J. Statist. Comput. Simulation 51, 165±

183.

Horn, R.A., Johnson, C.R., 1985. Matrix Analysis. Cambridge University Press, New York.

Johnson, N.L., Kotz, S., 1972. Distributions in Statistics: Continuous Multivariate Distributions.

Wiley, New York.

Martin, R.J., 1993. Approximations to the determinant term in Gaussian maximum likelihood

estimation of some spatial models. Comm. Statist. Theory Methods 22 (1), 189±205.

Narayanan, A., 1990. Computational aspects of dirichlet distribution. American Statistical

Association 1990 Proceedings of the Statistical Computing Section, pp. 239±243.

Pace, R.K., Barry, R.P., 1998. Quick computations of spatially autoregressive estimators,

Geographical Analysis 29 (3), 232±247.

Strang, G., 1976. Linear Algebra and its Applications. Academic Press, New York.

54 R.P. Barry, R.K. Pace / Linear Algebra and its Applications 289 (1999) 41±54


