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Abstract

Models of n* potential spatial dependencies among n observations spread irregularly
over space seem unlikely to yield simple structure. However, the use of the nearest
neighbor leads to a very parsimonious eigenstructure of the associated adjacency matrix
which results in an extremely simple closed-form for the log-determinant. In turn, this
leads to a closed form solution for the maximum likelihood estimates of the spatially
autoregressive and mixed regressive spatially autoregressive models. With the closed-form
solution, one can find the neighbors and compute maximum likelihood estimates for
100,000 observations in under one minute. The model has theoretical, pedagogical,
diagnostic, modeling, and methodological applications. For example, the model could
serve as a more enlightened null hypothesis for geographic data than spatial

independence.

Keywords: spatial statistics, spatial autoregression, nearest neighbor, maximum likelihood,

sparse matrices, log-determinants



Closed-Form Maximum Likelihood Estimates of Nearest
Neighbor Spatial Dependence

I. Introduction

The task of modeling the n* potential dependencies among n spatially scattered
observations has generated a substantial amount of intellectual activity. Naturally, many
possible ways exist to specify the spatial interactions. Virtually all distance-based weighting
methods such as variograms or spatial weight matrices assign some positive influence to the
nearest observation, the nearest neighbor. In this sense, the nearest neighbor is common to
most methods.

Given the ubiquitous nature of nearest neighbors, it seems worthwhile to examine a
limiting model of spatial dependence, a model where observations depend only upon their
nearest neighbor. Such special cases often help illustrate the more general case.

The nearest neighbor graph exhibits a number of important regularities. These
regularities ensure the associated adjacency matrix (spatial weight matrix in this case) has a
remarkable structure — the eigenvalues are all —1,0, or 1 and the number of 1,-1 pairs
equals the number of pairs of symmetric elements in the adjacency matrix. This leads to a

simple closed form for log|l — oD

, where o represents a spatial autoregressive parameter
and D represents the n by n nearest neighbor adjacency matrix. Specifically,
log|l —aD| = Klog(1-a?), where K represents the number of symmetric pairs of elements in

the adjacency matrix. While such simple forms for the exact eigenvalues and log-
determinants have been obtained before (e.g., Ord (1975), Gasim (1988), Griffith and Sone

(1995), Martin (1993)), such results pertain to various patterns based upon regular sets of



points or to very small numbers of points. The nearest neighbor eigenvalue results apply to
arbitrary sets of points scattered across one, two, or more dimensions.

This simple form for the log-determinant leads to a closed-form solution for the
spatially autoregressive and mixed regressive spatially autoregressive maximum likelihood
estimators. In fact, we obtain a closed form not just for the log-determinant of the nearest
neighbor adjacency matrix but also the log-determinant of any linear combination of the
odd powers of this matrix. Finding the nearest neighbors and using them in estimation
requires approximately O(rnlog(n)) operations.

We illustrate the operation of the nearest neighbor model with an application to the
data set analyzed by Pace and Barry (1997). By modeling just one neighbor, we obtain
estimates whose log-likelihood is approximately halfway between those of maximum
likelihood using zero neighbors (OLS) and maximum likelithood using four neighbors.

In addition, we conduct a Monte Carlo investigation of the sensitivity of the estimator
to a simple form of zonal anisotropy. As expected, the anisotropy reduces the benefits from
using the estimator. Nevertheless, the estimator still yields substantial improvements over
the use of OLS even in the presence of this form of isotropy.

The simple form of the estimator can help clarify more complicated spatial
dependence, aid in theoretical investigations, and serve as a useful pedagogical tool. In
addition, the nearest neighbor maximum likelihood estimate of spatial dependence could

have diagnostic value. Finally, it can provide a naive model useful for gauging the



contribution of more complicated approaches while still keeping within the useful
maximum likelihood framework.!

Section II discusses the regularities in the nearest neighbor graph, section III uncovers
the eigenvalues and log-determinant of the associated adjacency matrix, section IV shows
how these lead to a closed-form solution to the maximum likelihood first order conditions,
section V provides a more general model with a closed-form maximum likelihood solution,
section VI applies the model to an actual data set, section VII examines the performance of
the estimator in the presence of misspecified dependence and anisotropy, section VIII
discusses the time required for computing the estimates, and section IX concludes with a

discussion of the key results.
I1. The Nearest Neighbor Graph
Given n points or nodes, we consider their nearest neighbor graph. We make the

following assumption:

Assumption 1: Each node has an unique nearest neighbor (other than itself). This

rules out ties among multiple nearest neighbors.

This Assumption eliminates the situation depicted in Diagram 1, where the arrows point to

the nearest neighbor. Hence, nodes ¢ and @ cannot simultaneously be the nearest

I Other simple spatial estimators exist such as the coding estimator of Besag (1974). However, it becomes difficult
to examine the null within a nested set of models, an almost essential requirement for a useful null hypothesis

estimator.



neighbors of node b. Given Assumption 1, the results developed below apply only to

irregularly spaced sets of nodes.2

a-b-c (Diagram 1)

Proposition 1: The nearest neighbor graph associated with the n nodes cannot

have simple cycles such as illustrated in Diagram 2.

a
T d (Diagram 2)
y

Proof. We use induction on the number of nodes. When the number is 3, we
assume contrary to Proposition 1 that there is such cycle. Hence, we have the

situation depicted in Diagram 3.

N v (Diagram 3)

This means that b 1s the nearest neighbor of a, ¢ 1s the nearest neighbor of b, and

a 1s the nearest neighbor of ¢. Or if we let dist(x, y) represent the distance between

2 Other techniques exist to deal with completely regular sets of points. If only some of the points have equal
distances, the technique of randomly perturbing the points and computing the desired quantities across a number
of iterations may have some value. This operation (termed “dithering”) has seen substantial usage in fields such as

image processing.



two arbitrary points x and y, Diagram 3 is equivalent to the following inequalities

presented in (1):

dist(a,b) <dist(a, j), Oj #a,b
dist(b,c) <dist(b, j), O b,c
dist(c,a) <dist(c, j), O c,a. (1)

In particular, (1) implies (2),

(22) dist(a,b) < dist(a,c),
(2.2) disgt(b,c) < dist(b,a), (2)
(2.3) dist(c,a) < dist(c,b).

The system of inequalities in (2) and the symmetry of distance (dist(b, a) = dist(a,

b), dist(c, b) = dist(b, c), dist(c, a)=dist(a, ¢)) implies (3),

(2.3 (2.2) (2.
dist(a,c) < dist(b,c) < dist(a,b) < dist(a,c) (3)

which is impossible and proves by contradiction the 3 node case.

Suppose the proposition is true for any number of nodes less than m, then we

prove it is also true for m nodes. From Diagram 2, we have the inequalities in (4).

(41 dist(a,b) <dist(a,j), Vj#a,b
(4.2) dist(b,c) <dist(b,j), Vj#b,c
: )

(4m=-1) dist(x,y)<dist(x,]), Vj#X,y
(4m) dist(y,a) <dist(y,j), Vj#y,a



Similarly, working from the last inequality in (4) back up to the first one, and

using the symmetry of distance, gives us the inequalities in (5),

1) (43)

] (am (4m- ) (42 (an
dist(a,y) < dist(x,y) < --- < dist(b,c) < dist(a,b) < dist(a,y) (5)

which is impossible and by the contradiction proves the proposition. QED

Definition 1. Two subgraphs are said to be disconnected, if for any two nodes a
and b, such that alG,,ii] G,, a is not connected with b, and b is not connected
with a. Hence, there are no sequences of nodes ¢, d,..., ¢ or u,v...,w satisfying a set

of connections such as illustrated in Diagram 4.

as-c-dos---sesbobsusv o swosa (Dlagram4)

Proposition 2. Each subgraph has exactly one 2-node-cycle such as depicted in

Diagram 5.

aob (Diagram b5)

Proof. Begin from any node a, whose nearest neighbor is 4, and b whose nearest
neighbor is ¢, and so on. This leads to a chain such as illustrated in Diagram 6
where the braces show a choice between two mutually exclusive potential

neighbors:



a

b
a-b-q. 4. C (Diagram 6)
e—) ...—>y<—>Z

In Diagram 6, a directed edge either (I) extends to a node not previously
connected or (II) connects back to the previous node (the node and the previous
node are nearest neighbors to each other). Proposition 1 allows no other possible
connections. If case II occurs, this establishes the existence of the 2-node-cycle. If
case I occurs, this process continues until encountering case II or until all nodes
have been connected. If all nodes have been connected, the last node z must
connect to some neighbor, which must be the previous node y by Proposition 1.

This proves the existence of a 2-node-cycle.
Suppose we have two such cycles in a subgraph such as in Diagram 7:

gohokososasbosseof (Diagram 7)

The part g —~ h — k violates Assumption 1. This proves the uniqueness part of

Proposition 2. QED
Proposition 3: Each subgraph is disconnected from the other subgraphs.

Proof. The proof is immediate in the case of one subgraph. If two subgraphs exist

and 1if they were connected, by Definition 1 and Proposition 2 this would be the



situation discussed in Diagram 7. As shown in the proof of Proposition 2, this

situation is not possible. Hence, the subgraphs must be disconnected. QED

As an additional illustration, Diagram 8 presents a more complicated individual
subgraph. The diagram shows how multiple nodes can have an individual node as nearest

neighbors but not vice-versa. Note, the existence of only one 2-node-cycle between nodes a

and b.

t q
I v v
p o] i h
2 N v J
S a e b J (Diagram 8)
T AN v
] c
\) 2 0
I > k d <« f
T AN
m e

To give a better idea of the effects of the three propositions, we present a diagram of
the United States counties and their nearest neighbor graph (without arrows) as depicted
in Diagram 9.3 As expected from the Propositions stated above, all the subgraphs are

disconnected, and each one has exactly one 2-node-cycle and no simple cycle (cycles

3 A Lambert conformal conic projection of the latitude and longitude of the county centroids yielded the x, y
coordinates used in the construction of Diagram 9. The projection minimized the error along the 27.5 and 43.5

degree parallels.
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containing three or more nodes). Intriguingly, the nearest neighbor graph leads to a

potential mathematical description of regions.

Diagram 9 — US County Subgraphs
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II1. The Nearest Neighbor Adjacency Matrix and its Eigenvalues

Given the nearest neighbor graph discussed in section II, we now focus upon the
associated adjacency matrix and its properties. We show the adjacency matrix has
particularly simple eigenvalues and an extremely simple closed form determinant formula.
Insofar as the matrix has no negative values, has only zeros on the main diagonal, and each

row contains a single 1, this adjacency matrix is also a row-stochastic spatial weight matrix

11



and hence the log-determinant of this has immediate relevance in computing maximum
likelihood estimates, a topic explored in section IV.
We begin by examining Proposition 4 which clarifies the structure of the adjacency

matrix.

Proposition 4: The nearest neighbor graph possesses a block diagonal adjacency

matrix representation. Furthermore, each block is a block triangular matrix itself.

Proof. Suppose the nearest neighbor directed graph has K subgraphs and
construct the associated nearest neighbor adjacency matrix D for the » nodes
according to the directed graph. Proposition 2 implies that the number of
subgraphs in the directed graph equals the number of pairs of symmetric
elements in the associated adjacency matrix D. Since these subgraphs are
disconnected to each other by Proposition 3, we can label the nodes in such a way
that the labels corresponding to one subgraph are contiguous. This way we get a

block diagonal form of D as shown in (6).

Where each D, corresponds to the ith subgraph (¢=1, 2, ..., K), and all the other
elements in D that do not belong to the blocks are zeros, due to the fact that the

subgraphs are disconnected. Moreover, when we label the nodes in each

12



subgraph, we can start with its 2-node-cycle so that each D, has the following

block triangular form as in (7).

01
D =|t0 7
R o

Thus the proposition is proved. QED

Theorem 1: Given n nodes, whose nearest neighbor graph has K subgraphs.
Then their nearest neighbor matrix D has eigenvalues 1 and -1 each repeating K

times, and O that repeats n-2K times.

Proof. By Proposition 4, in order to find out the eigenvalues of D, we need only

find out the eigenvalues of each block D, and take the union of them. Since all

the subgraphs have the same structure, so do all the blocks of the adjacency

matrix. So analyze D, as an example. Assume that D,’s order is n,. By the proof

of Proposition 4 we see that D, has the block triangular form in (8).

_|96 Of_|B O
SR

Where B, = {‘1’ (1)}, and B, is a n;-2 by n,-2 square matrix. Furthermore, the block

triangular form of D, itself means it is reducible and hence the union of the
eigenvalues of B, and B, constitute the eigenvalues of D,.

13



Note, that tr(B,) =0 and {r( Bf)=2. Hence, the eigenvalues of B, satisfy (9).

A +A,=0and A2+ X, =2 9)

Solving these two equations leads to A, =1,4, = 1.

Since the set of eigenvalues of D, is the union of that of B, and B,, thus all we
have to show for the rest of the theorem is that B, has only one eigenvalue 0 that

repeats n -2 times.

Following similar logic, ¢r(B,)=0 and tr(Bf) =0. Proposition 2, which shows each
subgraph has only one 2-node-cycle, implies tr(B7) =0. The existence of an
unique 2-node-cycle means D, has only two symmetric elements that are
arranged in the submatrix B,. Therefore, all the elements in B, are asymmetric,

and this implies tr(B?) =0. Hence, the eigenvalues of B, satisfy (10).

Solving these two equations leads to A, =0 fori=1...,n -2.

Hence, D,’s only eigenvalues are 1, -1 and 0, with 0 repeating n,-2 times. Similar
results can be obtained for the rest of the K-1 blocks of D. Thus the theorem is

proved. QED

14



Theorem 1 has many matrix function applications. The most obvious application leads
to a closed-form solution for the determinant of functions involving the nearest neighbor

adjacency matrix.

Application 1 of Theorem 1: Given any —1< <1, and any nearest neighbor
matrix D with K symmetric pairs, the simple expression for the log-determinant

appearing in (11) holds.

log|l —aD|= Klog(1-o?) (11)

Proof. Let {A,} be the set of eigenvalues of A. From Theorem 1 we know that,

matrix D has eigenvalues 1 and -1 each repeating K times, and all the other

eigenvalues are 0.

log/l —eD| =log[l; (1- a4,) = Klog(1+ ) + Klog(1- ) = Klog(1- &) (12)

Thus the application is proved. QED

Application 2 of Theorem 1: A weight matrix comprised of a linear combination

of the odd powers of D leads to the same log-determinant as using the weight

matrix D for a given «. Hence, logl —eW| = Klog(1-a?), where W= @, , D*?

i=0

m
given Y @, =1 for a positive integer .
i=0

15



Proof. By the definition of eigenvalues, Dx= Ax where x is an eigenvector and A4

is an eigenvalue. As well-known, D% = A’ for a non-zero integer ¢ (Strang (1976,
p- 180)). Hence, one can show that Wx= (z w,,, D*? ]x: (z @, , A7 ]x. The
i=0 i=0

eigenvalues of D are either —1,0, or 1. Odd-powers of these have the same value.

The linear combination of these will also have the same value (..,

Y o, A% = 2). Hence, W has the same eigenvalues as D and hence the same log-
i=0

determinant. Thus the application is proved. QED

Other applications of Theorem 1 are possible. For example, Bavaud (1998) discussed
the possible importance of matrix functions of row-stochastic weight matrices. Some of
these functions of the nearest neighbor weight matrix also have simple eigenvalues or
determinants. As a limitation, attempts to create symmetry by adding the nearest neighbor
adjacency matrix and its transpose destroy the simplifying structure imposed by using the

nearest neighbor and do not yield simple eigenstructure.
IV. A Spatial Maximum Likelihood Estimator with Closed Form Solution

Computation of the spatial maximum likelithood estimators has traditionally required
iterative, sometimes arduous, computations. The foregoing closed-form expression for the
log-determinant enables the spatially autoregressive model to have a closed-form solution
as well.

Let Y represent an n element vector of observations on the dependent variable, X

represent an n by p matrix of observations on the independent variable (X may include

16



functions of the spatial weight matrix), let D represent the n by n nearest neighbor

adjacency matrix as specified above, let S represent a p element vector of parameters

associated with the independent variables, and let o represent a scalar autoregressive

parameter. We fit the model Y—-aDY = XS+ ¢. The profile log-likelihood function is,

L(e) = C+log|l —aD| - (7)l0g(SSE () (13)

where C represents a scalar constant. Let B, =(XX)™ XY, B, =(XX)"XDY,e =Y-X4,,
g, = DY - Xg,. Following Anselin (1988, p. 181) or Pace and Barry (1997, p. 235-236), we

can write the sum-of-squared errors as a function of the autoregressive parameter as in (14)

SSE () = €le, —20€le, + °€lg, (14)

Substituting the expressions for SSE(«) from (14) andlog|l — eD| from (12) into the profile

log-likelihood equation (13) yields (15),

L(e) = C+Klog(l- ) —(%)log(ee, — 20€e, + ar’€le,) (15)

where K represents the number of symmetric pairs in the adjacency matrix. We wish to find
its maximum point with respect to the a parameter in (-1,1). We assume SSE>0, and given

this we calculate the first derivative of L which appears in (16).

L'(O() — Izalé + n(ede(ézaeded)
-

(16)

Setting L'(a) =0 and substituting the representation for SSE from (14), we obtain (17).

a’*(2K —n)e,e, + o (n—4K)€e,e, + a(neie, + 2Kee,) —nee, =0 (17)

17



We assume that not all points are symmetric (i.e., 2K #n). If 2K =n, the cubic term
vanishes and the first order condition in (17) becomes a simpler quadratic equation.

Assuming 2K #n, we can rewrite the coefficients from (17) as in (18).

_ (n=4K)€le, _ neje, +2Kele, _ -hejg, (18)
(2K -n)ele, ’ (2K -n)ele, ' (2K —n)ee,
and rewrite the cubic equation from (17) using the coefficients from (18) as (19).
x*+a,x* +a,x+a, =0 (19)

We define in (20) the following constants used for solving the cubic equation.

0= 3a,-a ,_9aa,~27a,-2a
9 54 (20)

S=3R+,Q*+R?, T =3R-/Q® +R?

Finally, the solutions appear in (21).

1
=S+T-=
X + 381
1 1 1
=-Z(S+T) -Za, +=iV/3(S-T 1
X, == (S+T) ~Za + i3S -T) @1

X, = —%(s +T) —éal —%i\/é(s -T)

By the properties of cubic equations, at least one of these solutions is real.
Exactly one of the solutions from (21) falls in (-1, 1). To see this, in (22) we take the

second derivative of L with respect to Q.

oo S s

The first and second terms within the brackets are unambiguously positive. The third term

(the term in braces) is identical to the second term of the first order conditions in (16). As

18



the first term in the first order conditions is negative, it follows the only other term (the
second term) must be non-negative at the optimum. The first two terms in brackets are
positive and the third term is non-negative and thus the expression in brackets is positive.
The positive expression within brackets is multiplied by a negative term in parentheses.

Thus, L”(a) <0 for ae(-11) and hence L(e) is strictly concave. Since ‘Ii‘ml L(c) = —eo, there

exists at least one interior maxima. By the strict concavity of L(e), this maxima will be the

maximum. Hence, a value of o from (-1, 1) uniquely maximizes the profile log-likelihood.
V. A More General Spatial Maximum Likelihood Estimator

We consider a generalization of the model in section IV. We now find the closed-form
solution for the autoregressive parameters associated with the odd powers of the nearest
neighbor adjacency matrix. The odd powers of the nearest neighbor adjacency matrix have
the desirable feature of zeros along the diagonals (unlike the even powers). Provided the
linear combination of the odd powers have coefficients summing to unity, the resulting
linear combination will have the same set of symmetric elements as the first-order nearest
neighbor adjacency matrix, but will have different weights for the asymmetric elements.
Because they share the same set of symmetric elements (same set of 2-node-cycles), they
will have the same set of eigenvalues, as shown in Application 2 of Theorem 1. Hence, the
linear combination provides a way of incorporating the effects of more distant observations
without complicating the computation of the log-determinant. Thus, this generalization
can improve the richness of the nearest neighbor model of spatial dependence at little

additional computational cost.

19



Now we would like to consider the maximum likelihood function in (23),

m
2i+1
I - aoz @y ,,D

i=0

L(e,, 0,03, ,0,,,) =109

n
—Elog(SSE(ao,a)l,a)S,--~,a)2m)) (23)

m
where 1<, <1, Y 0,,, =1, SSE(@,,0,,0;,,0,,,) =V(EE)V, E' =(€,,68,,€5,**,€2m1) »
i=0

and V' = (l-a,0,~0,0,, - —0 0,,,,) . We assume E has full rank. Substituting the relation

from (11) into (23) yields (24).

(@, 01,03+, 05,,) = KlOGlL= 1, " 2 log(V (EE)Y) (24)

To find the maximum of L we proceed in two stages. First, we maximize L with respect

m
to w,,@;,...,0,,,, subject to 20)2i+1 =1 holding ¢, constant where -1< «,<1. Holding «,
i=0

constant makes maximizing the log-likelihood equivalent to minimizing a quadratic form
subject to linear equality constraints. We substitute the optimal v'(¢,) into L to form the
profile L(e,). Second, we maximize the resulting profile log-likelihood L(¢,) with respect

o o

0"

To begin the first stage of optimization, let (25)

(=V'(E'E)V+2(r - Rv)A (25)

1 000

, and Rv=r. Taking first
o111 ..

be the Lagrange function, wherer’ = (1L-¢,), R =(

derivatives yields (26).

20



2 o NEEW-2RA=0
N

A r—Rv)=0
oA
From the second equation, we get r = Rv; from this and the first one we get

A =(R(E'E)"R)™r . Substituting this back into the first equation yields the optimal solution

as a function of ¢, in (27).

V' (ar,) = (EE) *R(R(E'E) 'R)'r. (27)

The matrix E’E is a variance-covariance matrix and is positive definite (we assumed E had
full rank). Hence, this solution should minimize the sum-of-squared errors subject to the
constraints and thus maximize the log-likelithood subject to the equality constraint for a
given value of ¢, . Substituting the optimal v'(,) into the log-likelihood in (24) yields the

profile log-likelihood in (28).

L(er,) = KlogfL— 0:02|—glog(r’(R(E’E)‘1 R)™r) (28)
Let G=(R(E'E)"R)™, a 2 by 2 matrix. We can rewrite the profile log-likelihood in (28) as

(29).

L(2,) = KloglL- o -5 100(G,, ~ 201,G, + 22G:) (29)
This 1s exactly the same problem as analyzed in section IV with G;; serving the same role as
€e,, G, =G, serving the same role as €¢,, and G,, serving these same role as €g, .

Hence, we can use the solution developed there for the second stage of the optimization of

the profile log-likelihood.

VI. Application of the Estimator to Geographical Data
21



To illustrate the effects of modeling spatial data with the nearest neighbor as opposed
to multiple neighbors, we fitted the model and data introduced by Pace and Barry (1997).
They examined voting behavior for the 1980 presidential election across 3,107 counties in
the continental US using a mixed regressive spatially autoregressive estimator (Ord (1975),
Anselin (1988)). Table 1 reproduces their OLS and maximum likelihood estimates using
the four nearest neighbors ( B,s, Bu._.) and augments these with the estimates using the
nearest neighbor (3,, ;) and the nearest neighbor with the addition of a third-order

nearest neighbor ( B, ;). We employed the Euclidean metric using unprojected latitude

and longitude to determine the neighbors. Table 1 only shows the estimates for the
independent variables common to all estimators. For brevity, it does not show the results
for the numerous spatially lagged independent variables. We report likelihood ratio
statistics (1.e., twice the difference between the restricted and unrestricted log-likelihoods)
for the null hypothesis that a variable has no effect or in many cases that a variable and its
spatial lag have no effect.

The third-order neighbor corresponds to using the nearest neighbor of the nearest
neighbor of the nearest neighbor (i.e., D}). For symmetric elements, the third-order
neighbor adjacency matrix has the same entries as the first-order nearest neighbor
adjacency matrix (in Diagram 8 the nearest neighbor to node b is node q, its nearest
neighbor is node b, and finally its nearest neighbor is back to node a). For asymmetric
elements, the third-order neighbor adjacency matrix elements are not the same as the first-
order neighbor adjacency matrix elements (in Diagram 8 the nearest neighbor to node ¢ is

node d, its nearest neighbor is node ¢, and the third-order nearest neighbor is node b). For

22



graphs with many asymmetric nodes, the use of the third-order or higher odd-order
adjacency matrices could capture some of the more complicated spatial dependence. See
Anselin and Smirnov (1996) for more on higher-order weight matrices.

As one might expect, the nearest neighbor maximum likelihood estimates usually fell
between the OLS and maximum likelihood using the four nearest neighbors. The log-
likelihood was —6307.1 for OLS without lagged independent variables, -5964.6 for
maximum likelihood with the nearest neighbor, -5954.9 for maximum likelihood with the
nearest neighbor and the third-order neighbor, and —-5678.8 for maximum likelihood with
four nearest neighbors. As expected, maximum likelihood with four neighbors significantly
outperformed the other specifications. However, the nearest neighbor maximum
likelihood estimator clearly outperformed OLS. Its log-likelihood fell about halfway
between that of OLS and the four nearest neighbor maximum likelihood estimators. The
addition of the third-order neighbor increased the log-likelihood significantly, but did not
materially change the estimates or the goodness-of-fit.

Figure 1 displays the profile log-likelihood (actually twice the log-likelihood) as a
function of the autoregressive parameter « for both the unrestricted model and for the
relevant restricted models. The restricted models include one without an intercept (1
restriction), one without the population over 18 years of age and its spatial lag (2
restrictions), one without the population with more than 12 years of education and its
spatial lag (2 restrictions), one without the owner-occupied housing units and its spatial lag
(2 restrictions), as well as one without aggregate income and its spatial lag (2 restrictions).

For each profile log-likelihood curve, an asterisk denotes the & producing the maximum
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log-likelihood for that model. As expected, all of the curves have clear concave shapes

without any visible irregularities.

Figure 1 — Profile Log-likelihoods (Restricted and Unrestricted)
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The profile log-likelihood curves provide a wealth of information on the importance of
the variables, the autoregressive parameter, and their interactions. First, variables whose
deletion (restriction to zero effect) results in a curve substantially below the unrestricted
curve are clearly statistically significant. Under the null hypothesis of no effect, single
restrictions (i.e., no intercept) should have a likelihood ratio statistic (twice the difference
between the restricted and unrestricted log-likelihood) of less than 4 at approximately the

5% significance level and of less than 6 at approximately the 1% significance level.
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Similarly under the null hypothesis of no eftect, dual restrictions (e.g., no effect of income
and spatially lagged income) should have a likelihood ratio statistic (twice the difference
between the restricted and unrestricted log-likelihood) of less than 6 at approximately the
5% significance level and of less than 10 at approximately the 1% significance level.* All of
the variables in the model have likelihood ratio statistics exceeding these critical values.
Second, the curvature of each curve conveys information concerning the estimation error
associated with the autoregressive parameter. Third, the shift of the autoregressive
parameter across the curves reveals the extent to which the autocorrelation adjustment can
substitute for the deletion of a variable. For example, the autoregressive parameter rises
from 0.34 to 0.49 in response to the deletion of the education variable and its spatial lag.
The optimal value of o for the nearest neighbor estimator was 0.3352 which contrasts
with the optimal value for the four neighbor estimator of 0.6150. The optimal value for «,
was 0.341 (w,,w, was 0.733, 0.267), a small increase over the nearest neighbor result.
Median errors and other statistics show the nearest neighbor estimator results continue to
fall between the results for OLS and the four neighbor maximum likelihood estimator.
Undoubtedly, other ways of specifying the model and the form of spatial dependence
would result in superior performance to the simple four neighbor model used as a
standard of comparison. In addition, other data and models may yield different degrees of
improvement. To partially address this and to address the important problem of

anisotropy, we conduct a Monte Carlo study in the following section.

4 The likelihood ratio statistic is asymptotically distributed as chi-squared with degrees-of-freedom equal to the

number of equality restrictions (Cramer (1991, p. 39)).
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VII. Simulated Performance With Misspecified Dependence and Anisotropy

Real world data exhibit far more complicated spatial patterns than nearest neighbor
spatial dependency. Actual spatial processes almost certainly involve multiple neighbors
and may vary with direction or by zone (directional or zonal anisotropy). To better
understand the roles of the various estimators, we devised a Monte Carlo experiment
which employs random variables with multiple neighbor dependency and with a
particularly simple form of zonal anisotropy.

We begin by examining the point distribution of the spatially correlated random
variates. Points were uniformly distributed over the regions depicted in Diagram 10. We
begin with the pair of boxes on the left separated by a heavy line. Each of these boxes has
an aspect ratio (length/width) of 2. In contrast, the pair of boxes on the right have an
aspect ratio of 10. As the aspect ratio becomes very large, the regions approach lines.

In the experiment, we will generate pairs of correlated random variables (with spatially
random point distributions). One of each pair will be distributed in the top box and the
other will be distributed in the bottom box. Each set of variates in the pair will be
statistically independent of the other. Within each box the random variates are spatially
correlated, but between boxes they are independent. Hence, this provides a simple way to
simulate a form of zonal anisotropy.

The anisotropy in this case means that movements in one direction (along the longest
dimension) can have different dependence than movements in the other direction (along

the shortest dimension). One could imagine the heavy line represents a closed border, for
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example, and economic activity on each side is correlated, but that the economic activities

of each side are independent of the other side due to lack of trade.

— —

This situation presents a way of testing the performance of the nearest neighbor

(Diagram 10)

estimator in the presence of a form of anisotropy. Since estimator relies upon the nearest
neighbor, selection of the neighbors disregarding the closed border will sometimes result
in the selection of an across-the-border neighbor whose value is statistically independent of
the dependent variable. Obviously, this should degrade the performance of the nearest
neighbor estimator. As the aspect ratio rises (holding n constant), the chance of the nearest
neighbor appearing across the border rises. Hence, one would expect a larger aspect ratio
would hurt the performance of the nearest neighbor estimator. By the same argument,
other estimators using a weight matrix based upon isotropic dependencies should also
suffer a loss in performance.

Given the point distributions of the random variates, we simulated a mixed-regressive
spatially autoregressive process where Y is an n vector of the correlated dependent variable,
@ 1s the autoregressive parameter, ¥ is an n by n Delaunay spatial weight matrix formed
from the spatially random point distribution, X, is an n element N(0,1) vector,

B=[0 1 -05], and & is an n element vector of N(0,1) random errors.

Y=(1 = pW) ([ B, + X B8, +WX,B;) + (I - pW) e (30)
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For each of the six values of the autoregressive parameter ¢

(p=[010 025 050 0.75 090 0.95]), we ran a pair of separate realizations of 5,000
observations each. We repeated this 100 times. Hence, we ran 100 pairs of realizations of
the 5,000 element vector of correlated random variates for each of the six values of the
autoregressive parameter.

To place the results in perspective, we compared the nearest neighbor estimates based
upon the pooled observations to (1) estimates from using the correct model (Delaunay
weights) for each one of the series comprising the pair, (2) estimates from using the
Delaunay weights based upon the pooled observations, and (3) the OLS estimates based
upon the pooled observations. Table 2 presents the results of the experiment. As an
illustration of the accuracy of the simulation and estimation, the average estimated
autoregressive parameter was on average within two places of the true autoregressive
parameter.

The root mean-squared error of the nearest neighbor estimates relative to the root
mean-squared error of the estimates based upon the true model appear in the column

RMSE,, ./ RMSE the root mean-squared error of the maximum likelihood

True—Delaunay *
estimates using Delaunay weights for the pooled observations (ignoring the boundary)
relative to the root mean-squared error of the estimates based upon the true model appear

in the column RMSE I RMSE while the root mean-squared error of the OLS

1so— Delaunay True—Delaunay *

estimates relative to the estimates based upon the true model appear in the column

RMSE,, o/ RUSE

True—Delaunay *
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The performance of the nearest neighbor (ML-1), the Delaunay model applied to the
pooled observations, and OLS degrade as the degree of autocorrelation increases.
However, the nearest neighbor performs relatively better than OLS for high levels of
autocorrelation. For an aspect ratio of 2 and ¢ =095 the closest neighbor estimator does
67% worse than the estimator based upon the true model but the OLS estimator performs
166% worse and the estimator using the Delaunay weights based upon the pooled
observations performs only 2% worse.

The increase in the aspect ratio adversely affects the performance of all the estimators.
However, OLS suffers relatively smaller losses compared to the nearest neighbor. For an
aspect ratio of 200,000 and ¢ =0.95 the closest neighbor estimator does 171% worse than
the estimator based upon the true model, the OLS estimate performs 222% worse, and the
estimator using the Delaunay weights based upon the pooled observations performs 126%
worse. Interestingly, the anistropy in this case produced a greater deleterious effect upon
the more complicated model (Delaunay on the pooled observations) than it did upon the
simpler nearest neighbor and a fortiori OLS. The point geometry (e.g., aspect ratio) changes
the nature of the spatial dependence and hence the performance of the estimators vary.

Note, the Delaunay W is symmetric and for this two-dimensional example will on
average have six neighbors for each observation. Although the true process is symmetric,
two-dimensional, and anisotropic, the nearest neighbor method outperforms OLS. For this
experiment, an imperfect but limited model of spatial dependence can still outperform

OLS, which assumes no dependence.

VIII. Computational Considerations
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To find the nearest neighbors one usually employs a quadtree algorithm or a Delaunay
triangularization algorithm. Optimal versions of these algorithms require O(rlog(n))
operations (Eppstein, Paterson, and Yao (1997)). The OLS computations used by the
estimator require O(nk”) operations.

To examine this further, we generated some random points for the dependent
variable, the independent variables (k=21), and their two-dimensional locational
coordinates. Table 3 contains the timings. The timings coincide well with the predictions of

O(nlog(n)) performance.

The nearest neighbor spatial autoregressions require almost no time for the sample
sizes used in practice, require less than one minute for 100,000 observations, and under
four minutes for 500,000 observations. We measured the times on a dual 500 megahertz

Pentium III with one gigabyte of memory running Matlab 5.3 under Windows N'T 4.0.

We used a Delaunay triangle based method for finding the nearest neighbor. The
routines do not require the use of sparse matrices and hence could be implemented in

other computer languages. The data and software is available at www.finance.lsu.edu/re.
IX. Conclusion

Even from a set of irregularly arranged points, nearest neighbor graphs display several
important features which lead to a very simple eigenstructure of the associated adjacency
matrix. In turn, this simple eigenstructure leads to an extremely simple closed-form for the

log-determinant. Finally, this leads to a simple closed-form solution to the spatially
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autoregressive or mixed regressive spatially autoregressive maximum likelihood first-order
conditions.

The results for nearest neighbor dependency have a number of applications. First, its
mathematical simplicity could aid theoretical investigations of more complicated situations
where space plays a role. The nearest neighbor model combines certain aspects of spatial
statistical and time series dependence. Some observations have the simultaneous
dependence (i.e., the 2-node-cycles) the hallmark of spatial statistics while other
observations depend strictly upon the previous node in the graph. As demonstrated by the
Monte Carlo experiment, the low cost of computation facilitates the execution of
simulation experiments. Hence, one could investigate other estimators than the ones
studied here. For example, one could easily compute the maximum likelihood SAR
estimator. The asymmetry of the weights makes it difficult, however, to develop a
traditional maximum likelihood CAR version of the nearest neighbor model (Besag (1974),
Besag (1975)).

Spatial robustness is one area where the simplicity of the nearest neighbor estimator
might play a role. Intuitively, the nearest neighbor model could suffer more severely from
spatial outliers than more complicated models of spatial dependence. However, its simple
structure might permit robustification without making the resulting estimator overly
difficult to use. In fact, the nearest neighbor model might provide a means of detecting
such spatial outliers.

Second, the easy computation of the estimates combined with the simplicity of the

method may confer a pedagogical advantage to the nearest neighbor model of spatial
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dependence. Since calculating the log-determinant only requires counting the number of
symmetric elements in the weight matrix, students could compute simple examples by
hand.

Third, since more general spatial dependence models usually include the nearest
neighbor, focusing on the nearest neighbor has a certain generality with respect to the
different approaches. As the nearest neighbor estimator should underfit the overall spatial
dependence, it provides a conservative estimate of the spatial structure and of the possible
improvement one could obtain with spatial methods. Both the empirical example and the
Monte Carlo study provided herein corroborate this assertion. Indeed, underfitting may be
preferable to overfitting. See Griffith (1996, p. 80)) for a discussion of the whether to
underfit or overfit. Intuitively, underfitting may serve as a robust strategy in the presence
of uncertain anisotropy. The Monte Carlo experiment conducted in this paper tends to
support this view. In the experiment, anisotropy actually degraded the performance of the
more complicated estimator (using Delaunay weights based upon all the points ignoring
the boundary) relative to the simpler nearest neighbor estimator.

Overfitting may also play a role. A liberal estimate of improvement obtained by
overfitting a spatial model (e.g., placing many variants of spatially lagged dependent and
independent variables on the right-hand-side of the equation and estimating by OLS)
could approximately bound the possible performance gains obtainable through spatial
estimation.

Fourth, the generality of nearest neighbor dependence and its ease of computation

suggest the use of the nearest neighbor maximum likelihood estimate of spatial
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dependence as a possible diagnostic. Again, it should underestimate the total degree of
spatial dependence and serve as a useful foil to upwardly biased EGLS estimates of spatial
dependence. In addition, decomposable or local spatial autocorrelation statistics have
become quite popular.> One could perform a similar decomposition (by subgraph) on the
nearest neighbor estimator.

Finally, the nearest neighbor maximum likelihood estimator could provide a more
enlightened null hypothesis than spatial independence. In many cases, such as with real
estate pricing models, assuming the null hypothesis of spatial error independence is a
“straw man,” since such data virtually always exhibit strong spatial dependence. Naive
models can serve as worthy adversaries, forcing more complicated models to justify their
existence. For example, in the forecasting arena, many sophisticated models do not
dominate their simpler counterparts in ex-sample prediction (Fildes and Makridakis

(1995)). Possibly, the same phenomenon could occur with spatial models.

5 See Boots and Dufournaud (1994), Anselin (1995), Ord and Getis (1995), Lowell (1997), Tiefelsdorf and Boots

(1997), and Sokal et al. (1998) for recent work on spatial diagnostics.
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Table 1 — OLS, Nearest Neighbor, and Four Nearest Neighbors ML

Estimates

OLS ML-1 ML-1,3 ML-4
Intercept 0.981 0.750 0.748 0.458
LR (3,=0) 411.2 957.8 252.9 92 .4
In(Population > 18 years of Age) -0.846 -0.749 -0.746 -0.717
LR (B3,,8s=0) 1205.6 985.4 980.65 882.4
In(Population with Education > 12 0.517 0.290 0.284 0.191
years)
LR (5;,8,=0) 954.4 595.1 591.0 257.1
In(Owner Occupied Housing Units) 0.429 0.446 0.447 0.451
LR (5,,8;=0) 529.3 645.5 653.2 732.7
In(Aggregate Income) -0.144 -0.033 -0.032 0.027
LR (fs.8,=0) 52.4 55.9 57.0 27.0
Optimal a for ML-4 0.615
LR(a=0) 1256.5
Optimal o for ML-1 0.335
LR(a =0) 684.8
Optimal «, for ML-1,3 0.341
LR(a,=0) 704.4
Optimal o, for ML-1,3 0.733
Optimal @, for ML-1,3 0.267
R® 0.524 0.642 0.645 0.712
Median |e| 0.086 0.073 0.073 0.061
Log-likelihood -6307.1 -5964.6 -5954.9 -5678.8
n 3107 3107 3107 3107
k 5 10 15 10
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Table2 — Closest Neighbor and OL S Performance Under Misspecification and

Aspect Ratio

N N N N NN

2,000
2,000
2,000
2,000
2,000
2,000

200,000
200,000
200,000
200,000
200,000
200,000

o

0.10
0.25
0.50
0.75
0.90
0.95

0.10
0.25
0.50
0.75
0.90
0.95

0.10
0.25
0.50
0.75
0.90
0.95

o

| so—Delaunay

0.10
0.25
0.50
0.75
0.90
0.95

0.06
0.17
0.35
0.57
0.73
0.80

0.06
0.13
0.28
0.50
0.67
0.75

Anisotropy

RMSE

|so—Delaunay

RMSE

True—Delaunay

1.00
1.00
1.00
1.00
1.01
1.02

1.01
1.01
1.06
1.20
1.58
2.08

1.01
1.02
1.07
1.25
1.69
2.26
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RMSE,, _, RMSE, ¢
RMSE e peansy ~ RMSErue paanay
1.01 1.02
1.02 1.02
1.06 1.09
1.20 1.3
1.45 1.94
1.67 2.66
1.02 1.02
1.02 1.02
1.08 1.10
1.28 1.37
1.76 2.12
2.39 312
1.02 1.02
1.02 1.03
1.09 1.10
133 1.39
1.93 2.16
2.71 3.22



Table 3 — Time in Seconds Needed for Locating Neighbors and

Computing Estimates versus n

n Neighbor Times Estimate Times Total Times
500 0.09 0.03 0.13
1,000 0.19 0.05 0.23
5,000 1.20 0.19 1.39
10,000 2.58 0.36 2.94
25,000 7.20 0.98 8.19
50,000 15.11 2.03 17.14
100,000 32.22 4.14 36.36
250,000 87.67 10.39 98.06
500,000 182.75 20.72 203.47
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