The following mansuscript appeared as,

Pace, R. Kelley, and Ronald Barry, “Fast CARs,” Journal of Statistical Computation and
Simulation, Volume 59, Number 2, 1997, p. 123-147.

We gratefully thank the Journal of Statistical Computation and Simulation and copyright owner
OPA (Overseas Publishers Association) NV for allowing us to distribute this electronic

version of the manuscript.

FAST CARS

By

R. KELLEY PACE
Department of Finance, E.J. Ourso College of Business Administration, Louisiana State University,
Baton Rouge, LA 70802 USA

RONALD P. BARRY
Department of Mathematical Sciences, University of Alaska, Fairbanks, AK 99775 USA*

This paper develops methods for quickly computing maximum likelihood conditional autoregressions
(CARs). By using sparse matrix methods, reorganizing the sum-of-squared errors function to avoid
unnecessary calculations, and precomputing a set of determinants, simulations of large CARs become
possible. As an illustration of the power of these approaches, a simulation of 250 CARs of 2,905
observations can take fewer than three minutes on a personal computer, despite the necessity of
evaluating 100 determinants of 2,905 by 2,905 matrices. The computation of each estimate via
examining the profile likelihood sampled at 100 points avoids problems of local optima. Simulating
estimates avoids other problems associated with the traditional information matrix approach to
inference.

KEY WORDS: Conditionally specified gaussian, Jacobian, GIS, vectorized profile likelithoods, spatial
statistics, sparse matrices.

1. INTRODUCTION

The advent of the global positioning system (GPS), which can measure precisely
geographic locations, coupled with the continuing development of geographic information
systems (GIS) have led to an explosion of spatial data. For example, inexpensive phone
books on CD-ROM now provide the latitude and longitude of over 100 million US
residences with various demographic variables. The Bureau of the Census provides
extensive demographic data for over 250,000 geographic points (census block groups).
Remote sensing via satellites and digital imaging yields even vaster quantities of spatial
information.

While the availability of spatial information has grown tremendously, the ability to

process it has not grown pari passu. The necessary reliance on a n by n matrix, where n

*R. Kelley Pace is Louisiana Real Estate Commission Professor of Finance and Ronald P. Barry is Associate
Professor of Statistics.

1

represents the number of observations, greatly impedes traditional spatial statistics from
handling larger sample sizes. Spatial estimators rely upon either a n by n variance-
covariance matrix (e.g., kriging), the inverse of the variance-covariance matrix (e.g.,
conditional autoregressions (CARs)), or the square root of the inverse variance-covariance
matrix (e.g., simultaneous autoregressions (SARs)). As n becomes large, the size of these
matrices becomes astronomical. For example, a 50,000 observation spatial regression
would require a 50 gigabyte variance-covariance matrix (double precision). Moreover, all of
these estimators use computations such as equation solutions, inverses, or determinants
which employ order of n cubed operations (O(rn’)) when operating on the full matrix.

Various ways of attacking this problem have been proposed. For example, Zimmerman
(1989) devised a computational acceleration for the Gaussian covariance structure over a
regular parallelogram lattice. Sone and Griffith (1995) discussed trade-offs from
approximating the difficult normalizing constant (determinant) in maximum likelihood
estimation of spatial statistical models. Li (1995) used a supercomputer to accelerate
computations of the determinant term.

Ideally, one would like to quickly compute maximum likelithood spatial statistics for any
sample size. To achieve this end, we assume that the direct effect of nearby observations
decays to 0 after some distance.” This leads to a sparse covariance or inverse covariance
matrix, which can potentially aid computations (e.g., Ho and Klotz, 1992). In fact, Pace and
Barry (1997) illustrated how to accelerate computations in SAR models via sparse matrices.
As an illustration, they computed a simultaneous autoregression (SAR) on 20,640
observations using sparse matrices in under 19 minutes despite evaluating a determinant
of 20,640 by 20,640 matrix ten times. Furthermore, Barry and Pace (1997) showed how to
apply sparse matrix methods to the kriging problem via a mining data set. In addition,
they performed a number of timing experiments showing the potential computational
gains for plausible values of the spherical variogram.

In the realm of lattice models, many prefer conditional autoregressions (Besag 1974,
1975), Cressie 1993, p. 407-410). Accordingly, this paper provides a number of

computational accelerations applicable to conditional autoregressions (CARs).

* This assumption has been employed both in a geostatistical context as represented by finite range variograms
(see Barry and Ver Hoef (1997) for more information) and in a lattice context as represented by a limited number
of neighbors. Even though the direct effect of a far away observations may be zero, each observation may yet have
an indirect effect upon all other observations due to the dependency of each observation upon nearby
observations.

2

The sparse matrix technology greatly accelerates computation of the normalizing
constant, the major bottleneck in past algorithms. The acceleration of the difficult
normalizing constant highlights other bottlenecks in the computation of CARs. We address
these other bottlenecks by modifying the CAR computations. First, since many evaluations
of the determinant term occur in the computation of each estimate, we reuse the same
determinants by evaluating a set of these prior to estimation. Second, we greatly simplify
the sum-of-squared errors (SSE) expression within the likelihood. This substantially
reduces the number of computations needed. Third, we vectorize the computations. Many
computer architectures favor the use of vectorized code. In addition, many languages such
as Fortran 90, Gauss, Matlab, and S-Plus run faster with vectorized code.t

Moreover, to avoid problems of multiple local optima reported by Warnes and Ripley
(1987), Ripley (1988), and Mardia and Watkins (1989), we evaluate the entire profile
likelihood for the spatial differencing parameter. This ensures robustness and aids
inference. In fact, we show computing profile likelihoods and simulating the estimator
provides a low-cost means of inference superior to the traditional information matrix
approach. Finally, we demonstrate an interesting invariance of CARs to a change in the
magnitude, but not the direction, of the true errors.

As an illustration of the efficacy of these techniques, we perform a Monte Carlo
simulation of the CAR estimator using 2,905 observations. Normally, even one spatial
autoregression of this size could prove challenging. For example, Li (1995, p. 130) took
8566.5 seconds on an IBM RS6000 to compute a single 2,500 observation SAR. In contrast,
we can compute 250 CARs on 2905 observations in 135.78 seconds (43.28 for 100
determinants and 92.5 for the other computations) using a 133 megahertz Pentium.

Section 2 discusses various facets of CAR computations, section 3 details the Monte

Carlo study, and section 4 concludes with the key results.
2. CAR COMPUTATIONS

Section A begins by discussing the CAR model, section B provides details on the
construction of the crucial spatial weighting matrix, section C discusses the SSE used in

maximum likelihood, section D demonstrates the invariance of the estimate @, to the

ml

magnitude of the errors (but not their direction), section E discusses vectorized ways of

computing the sum-of-squares, section F details the advantages of precomputing

" These interpreters clearly prefer the use of vectorized code. However, many compilers, such as Fortran 90,
prefer such code because it allows the use of many optimizations.

3

determinants, section G presents the profile likelihood for an entire simulation, and
section H gives ways of conducting inference without computing n by n information

matrices.
A. THE SPATIAL CONDITIONAL AUTOREGRESSIVE ERRORS MODEL

Suppose the errors arise out of the following spatial conditional autoregressive error

process,
Y=XB+(-¢C) "¢ (1)

where C represents a symmetric n by n weighting matrix with Os on the diagonal and non-
negative off-diagonals, the vector € of length n denotes a N(0, 6*I) error term, the n by &
matrix X contains the independent variables, and the vector Y of length n contains the
dependent variable. Since most interest centers on positive spatial autocorrelation, we use
the restriction @ 20. We will normalize the elements in C to yield a maximum eigenvalue
of 1. Coupled with the previous restriction, this normalization will ensure the positive
definiteness of C as long as ¢ <1. A positive entry in the jth column of the ith row of C
indicates that the jth observation directly affects the ith observation (i #j).

B. CONSTRUCTION OF THE SPATIAL WEIGHT MATRIX

As an illustration of how to construct C, compare the distance d; between every pair of

observations j and ¢ to d,,, ., the distance from observation and its mth nearest neighbor.

maxi >

Assign a weight of 1 to all observations in the non-normalized matrix C whenever d; is

less than or equal to d,,,, as in (2),

maxi

0<d, <d,,, - C"=1. (2)

maxi

Naturally, this yields a weight of 1 for the observation itself (d;= d; =0) and 0 for each

observation j more than d,,, . distance from observation ¢. To prevent the observation from

maxi
predicting itself, we set C{” = 0. The combination of these two procedures allows for
observations j colocated with observation ¢ (¢ # j) to have a weight of 1.

It seems reasonable to set to O the direct influence of distant observations upon a
particular observation. This assumption can lead to rather sparse forms for C which will
greatly accelerate the computation of the maximum likelihood estimator, as explored in

3.C.

As it stands, C™ is neither symmetrical nor normalized. Let S represent an n by n
diagonal matrix containing the square roots of the reciprocals of the sum of the columns

and rows of C™ .

diag(s) =[(c* + ¢ 3)

To normalize and make C symmetrical, we pre and post-multiply by S.
C=5(C" +C™)s (4)

This operation will ensure the largest eigenvalue of C equals 1. See Ord (1975) for more

details.
C. THE MAXIMUM LIKELIHOOD SUM-OF-SQUARED ERRORS

The conventional approach to computing CAR estimates relies upon solving the CAR
normal equations (5). However, the solution to the equations depends upon the

unobservable parameter @.
[X'(I = O)X]B=X"(I =)Y ()

Due to its favorable statistical properties, maximum likelthood (ML) is the preferred way to
determine the optimal value of @. Substituting the solution of the normal equations into
the likelithood function converts it into the univariate profile likelithood of the unknown
parameter, @. The optimal value of @ determines the ML estimate, @, .

Following the conventional approach becomes somewhat tedious when computing the
estimate for different realizations of the dependent variable, Y, or when one desires the
entire likelihood as a function of the unknown parameter, @, also known as the profile
likelihood. In either situation, one may need to solve equation (5) many thousands of
times.

To increase the computational performance of the CAR estimator, reparameterize it to
orthogonalize the independent variables as in (6). Hence, let Z represent a set of

orthogonal independent variables.
78 =Xp 7'7Z=1 (6)

car

One can write the CAR normal equations in (5) as,

[2(1-¢0)Z]8,, =[(I - @'C2)]8, =Z'(I- @)Y . (7)

Substitute the spectral decomposition of Z'CZ =UAU' in (7), where U represents a k by k
matrix of eigenvectors and A represents the k by £ diagonal matrix of eigenvalues. Since
the eigenvectors are orthogonal, I =UU" . Neither the spectral decomposition of Z'CZ or
the orthogonal reparameterization of Z'Z cost much computationally, since they work with

ak (as opposed to n) dimensional problem. Substituting both of these relations yields,
[(UU' -@UAUMIG,, =[U(I - eNU']8,, = Z'(I = @)Y . (8)

Solving for 6, yields,
6 =UUI-oN'UZI-q)Y (9)

Hence, the raw residuals from the above fit become,

A

T, =Y =26, =(I -2U(I ~eN"'U'Z' (I - ¢C))Y (10)
One can form the SSE for ML in (11) as in Cressie (1993, p. 437),
SSE , =7' (I-@C)r, (11)
Substituting (10) into (11) yields,
SSE,, =Y'(I-(I-qC)ZU(I =@N'U'Z')1~ @)1 -ZU(I = oN'U'Z(I~ @)Y (12)

ml

Expanding (12) gives,

SSE,, =Y'Y =@V'CY =2Y'(I - @)(ZU(I = oN'U'Z' (1 = @)Y + -
V(I =e0)ZU = N U2 (T = @)ZU(T = U7 (I~ @)Y
Reorganizing (13) highlights the term in brackets within (14),
SSE, = Y'Y =@V'CY =21 = @O)(ZU(I = QA" U'Z (I = @)Y + "

Y'((I=q0)ZU(I = @N'U' 2 Z - @'CZ) U - oN'U'Z (I~ @)Y

Recall [Z2'Z - @Z'CZ] =U(I - @NU" . Because of the orthogonality of U, a number of terms
cancel, thus simplifying (14) greatly.

SSE,, =Y'[(I-qC)~(I - €)ZUI - g/ U'Z/(I1 - @)Y (15)

D. INVARIANCE TO THE MAGNITUDE OF THE ERRORS

Take the expression for SSE,, in (15) and factor (I - gC)* out of the main body of
SSE

ml *

Hence,
SSE,, = Y'(I=@CY*[I =(1 - @)*ZU(I = oN'U'Z/ (I = @)*](I = §)*Y (16)
Assume, as CAR does, that,
Y=70_+(I-q) "¢ (17)
Substituting (17) into the (16) yields,
SSE,, = (e +6.,2/(I - qC)* 1 ~(I - @)*ZU(I - o/'U'Z(I - @)*|(I - ¢)*Z 9 + K18)
The terms involving 6, vanish, thus leaving,
SSE,, = s’[l (I -gC) ZU - oN"'U'Z' (I - cp:)/] £ (19)

Hence, scaling the errors by a positive constant will not affect where SSE attains its

minimum or where the likelihood attains its maximum.
E. COMPUTATIONAL FORMS FOR THE SUM-OF-SQUARED ERRORS

Expanding the basic SSE equation in (15) yields,

SSE,, =YY =@V'CY -Y'ZU[1- @N'U'ZY -Y'CZU §[I - @K' U'Z'CY +2Y'ZU fd - @NU'ZCY

ml

One has the choice of using a vector of values of @ but using only one vector of Y each
iteration or using a matrix of values of ¥ and looping over @. In an estimation context with
a particular Y, the first approach seems more natural.? In a simulation context with
multiple realizations of Y, the second approach seems more natural and thus we follow this
approach below.

For use with multiple realizations of Y as in simulations redefine Y, as [V}, Y,,... ¥},,], an
n by iter matrix. Define,

a, =2U,a, =CY, ,a, =a\Y,,a, = ajay,a; = diag([] —(p,;/\]_l)

nxk Xty e it oy
nxiter kXiter kxiter ixl

ag = [1]'(Y, IY,),a; =[1]' (Y, Ldy), a4, = a, ldy,a,, =a, ld,,ayy =2a, [d,

1 xiter 1xiter kxiter kXiler k xiter

* The algorithm using a vector of values of @works well, but has a somewhat more complicated form owing to the
number of places @ appears in the SSE,;.

7

where the symbol [denotes the use of Hadamard element by element multiplication.

SSE,(9,Y) = a; — @ a, —(a;)(as; — Qag, + @44)

1xiter 1xiter 1xiter 1xk k Xiter

Let @ takeonvalues [, @ @ ... ¢.Loop over SSE, (¢,Y,) [iterations of @to define
1 xiter
SSE (¢,Y). '
IX%iter

F. PRECOMPUTING LOG-DETERMINANTS

The log-determinant, In|/ — ¢C

, plays an important part in the likelihood function. If
@takes on only the values [@ @ ... ¢l, we can precompute an [by 1 vector of log-
determinants. Several advantages accrue to computing these as a group. First, the ordering
algorithms for sparse matrices apply to all matrices with a given pattern of sparsity. This
pattern of zeros and non-zeros for In|I — ¢C| would apply for all positive @. Hence,
computing the determinants as a group amortizes over [iterations the cost of computing
the optimal ordering. Second, as this could prove a time consuming step for some
problems, computing them as a group allows the computations to occur during non-peak
usage. Third, most fitting exercises involve exploratory or diagnostic variations in the
model which would affect the specification of X and hence Z but not affect In|[f - ¢C|. Thus,

changes in the specification of X further amortize the cost of precomputing In|l - ¢C].
G. COMPUTING THE CAR LIKELIHOOD

Given the various computations, we can define twice the profile log-likelihood over the

entire simulated Y.

L@Y) LQlY) ... L(@Y,)] [Infl-¢c| SSE(@.Y) ... SSE(Q.Y,,)
L@|Y) L(@lY,) .. L(qlY,, In|l - @,C SSE(@,,Y,) ... SSE(@,Y,,
o LeM) L@k . L(@Y,)| il -qCf| | ISSE@Y) ... SSE(Q.Y.,)
. : . . . 1xiter . . .
L@lY) L(QlY) ... L(@Y,)]| |In[I-¢C] SSE(Q,Y) ... SSE(@.Y,,)

For each column of twice the profile-likelihood, find the value of @ which maximizes each
column, ¢ . Hence, @ represents the maximum likelihood estimate, @,,, for the
dependent variable associated with that column. Each row provides information for
inference on @, across different realizations Y. Hence, the matrix of profile likelihoods

across @and Y provides a wealth of information.

H. INFERENCE

Computation of the observed or expected information matrix becomes expensive in a
spatial context. Inspection of the information matrix in Cressie (1993, p. 484) shows it
requires, among other computations, an n by n inverse (O(n")) and multiplication of n by n
matrices (O(n”)). The inversion of the n by n matrix defeats CAR’s computational
advantage of modeling the inverse of the variance-covariance matrix as opposed to
kriging’s approach of modeling the variance-covariance matrix directly.

In addition, the information matrix approach works best for a profile likelithood
quadratic in @. However, most plots of this type of profile likelihood display substantial
asymmetry (e.g., see Ripley 1988, p. 14) which seems natural given the limited range of @.
In such cases, as Meeker and Escobar (1995) as well as others forcefully argue, profile
likelihood techniques can outperform the information matrix approach. Finally, the
information matrix approach requires enough “smoothness” to make second derivatives
well-behaved. As Ripley (1988, p. 11-15) documented, such behavior does not occur
universally.

If interest centers only upon inference concerning @, the profile likelithood contains a
wealth of information. With this one can test hypotheses and construct confidence
intervals.

If interest centers upon both @and B, one could proceed via two routes. First, one
could use restricted least squares to conduct likelithood ratio tests. Because the problem has
been reparameterized in terms of 8, this complicates the construction of hypotheses.
Alternatively, one could simulate the problem. Simulation of the dependent variable values
as in (20) below and finding the maximum likelihood point estimates 6,, 0, requires

remarkably little time. Given a set of 6,, from a simulation, converting these back into Em,
also takes little time. The simulated set of @, E,,,, potentially provides better confidence
intervals than the traditional quadratic approximation based upon the observed or
expected information matrix. A simulation should provide better information as to the

small sample properties of the problem.

ile sparsity cou rea elp in computin e observed or expected information matrix, the fill-in
§ While sparsity could greatly help puting the ob d pected inf t trix, the fill
produced by inversion runs counter to the spirit of attempting to maximize sparsity.

9

As an added bonus, one could use this procedure to very easily perform Bayesian
inference. For example, inequality restricted Bayesian estimation arises naturally out of

simulation.” Section 3.F illustrates the use of simulation for inference concerning @.

3. SIMULATED CARS

This section examines a simulation of 2,50 regressions each using 2,905 observations.
Section A discusses the data, section B defines the role of sparsity, section C contains the
timings of the simulation computations, section D discusses the statistical results from the

simulation, while section E illustrates the use of simulation for inference.
A. MONTE CARLO DATA

To provide verisimilitude to the simulation, we chose an actual set of locations for use
in forming C, the spatial weighting matrix. Specifically, we used the geographic centroids
from all the census block groups in Connecticut from the 1990 Census. This yielded a
matrix C with 2,905 rows and 2,905 columns.

In the simulation, we:

1. Generated uniform random variables for nine columns of X and used a constant
for the other column.

2. Set (3 to a vector of ones.

3. Let @equal [.1, .25, .5, .75, .9].

4. Generated a common set of 250 N(0,1) vectors of 2,905 elements each using the
Matlab normal random number generator. We perform this operation once for
the entire simulation. Scaling the common N(0,1) errors by o generates the N(0,
0%) random variables. This practice, referred to as “correlated sampling”
(Rubinstein, 1981) greatly reduces the variance in Monte Carlo experiments.

We subsequently generated the autocorrelated dependent variable, Y, according to (20),
Y =XB+o(I -qC) *u (20)

where u represents an n by iter matrix of N(0,1) random variates. In actuality, we solved the

corresponding equation system in (21) for the coefficients Ag rather than computing the

inverse as this goes much faster.

** See Gilley and Pace (1995) for a Monte Carlo study of the inequality restricted Bayesian estimator. See Pace and
Gilley (1993) for more information on inequality restrictions in regression settings.

10

(I—([C)% Ay = w

A nX3tes
nxn nXxuler nxuler

_. 21
Ag = (=90 u
nxiter nxn nxaler
Compare this to the usual Cholesky decomposition and inverse formulation,
(I-9Cy" 4, = I
A, = (- gC) ™" (22)
Ay =4, uw =(1 _(FC)_% u
nxiter mxp T nxn nXaler

Relative to (21), (22) requires solving a larger system (n by n instead of n by iter and
subsequently multiplying an n by n matrix by a n by iter matrix (O(n’iter)). Since iter usually
is much smaller than n, the inverse method takes substantially longer for the same results.

Since efficient computation of the determinant required by maximum likelihood
estimation uses the Cholesky decomposition of (I — ¢C), this reduces the additional cost of
simulating the random numbers. However, solving the 2,905 equations by 2,905 unknowns
for iter right hand sides would prove quite difticult without resorting to sparse matrix

techniques as described in 3.C below.
B. SPARSITY IN SPATIAL PROBLEMS

If differencing an observation with its nearby neighbors removes most of the effects of
autocorrelation, the spatial weighting matrix C can be quite sparse. For example, if an
observation displays error dependency only with its nearest m neighbors, only m non-zero
entries exist per row of C. Thus, C will contain nm non-zero elements out of n* possible
ones. This produces a m/n proportion of non-zero elements, a popular measure of sparsity.
For example, with this problem we used four neighbors for each observation in computing
C'" . This resulted in C having on average 5.08 neighbors and a sparsity of 5.08/2905
(0.21%). This represents a very high level of sparsity which grows as n increases.

Sparsity results in a number of computational gains. First, it dramatically decreases the
storage needed for C and (I — ¢C). Using traditional dense techniques, C requires 67.5 MB
of storage (double precision). Using sparse matrix techniques, C requires less than 200 KB
of storage. Naturally, this divergence grows with n.

Second, sparsity greatly accelerates computations. For example, multiplying the n by »
matrix C with the n by k matrix X requires O(kn”) operations using dense matrices. Barring

computational bookkeeping, the equivalent sparse operation requires O(knm) operations, a

11

much smaller number. The real benefits come when computing determinants, inverses, or
solving systems of equations. All of these operations can build upon the Cholesky
decomposition of a matrix and all require O(rn”) operations when using dense matrices.
Sparsity, however, can totally change the order of the number of operations required in
these computations. For example, if (I = @C) had a band structure with half-bandwidth p,
the Cholesky decomposition of (I = ¢C), would require O(n(p* +3p)) operations (Golub and
Van Loan (1989, p. 154)). Hence, for fixed bandwidths the computations grow linearly with
n, the number of observations.

Unfortunately, the existence of a pure band structure does not arise very often. Figure
la shows the actual plot of the non-zero elements in (1 — ¢C). The existence of such
dispersed oft-diagonals could make it difficult to achieve computational gains.

However, one can permute the rows or columns of (I = ¢C) to reduce bandwidth or to
achieve other optimizations. A variety of such permutations exist (see George and Liu
(1981) for more on the various orderings). For example, the reverse Cuthill-McKee
algorithm attempts to reorder the rows and columns of the matrix to create a variable band
matrix as shown in Figure 1b. Figure 1b makes the gains of exploiting sparsity obvious.
Less obviously, Figure 1c shows the plot of (I —¢C) permuted using the column minimum
degree algorithm while Figure 1d shows the plot of (/ — ¢C) permuted using the symmetric
minimum degree algorithm. !

Table I shows the timings associated with computing the log-determinants using the
original, random, reverse Cuthill-McKee, column minimum degree orderings, and
symmetric column minimum degree orderings for (I — @C). As Table I makes clear, the
ordering of the rows and columns matters, with the symmetric minimum degree ordering
reducing execution times by 86% over the original ordering. Intriguingly, the more
intuitive reverse Cuthill-McKee ordering actually performed worse than the original
ordering but much better than the random ordering. As a worst case scenario, the random
ordering produced computational times worse than the optimal ordering by a factor of
572. All computations used the Matlab language running on a 133Mhz Pentium computer.

To place these results in perspective, Li (1995) took the eigenvalue route to computing
determinants.** Li used an IBM RS6000 Model 550 and a CM5 parallel processing

™ The use of column minimum degree ordering destroys symmetry. Hence, the determinant computations use
LU decomposition.

¥ The sparse matrix technology makes it much faster to compute the necessary determinants than to find the
determinant via eigenvalues, the standard practice in this area (Ord (1975)). While sparse eigenvalue routines
exist, these still require more time usually than the direct computation of a set of determinants.

12

supercomputer. The CM5 had 32 processors each with 32MB of local memory and four
vector units. For a 2500 by 2500 spatial weight matrix the RS6000 required 8515.07
seconds while the CMb required 45.78 seconds. In contrast, it took only 43.28 seconds to
compute 100 different determinants of a 2,905 by 2,905 matrix on a 133Mhz Pentium
computer using Matlab. Hence, the sparse technology employed here allowed a personal
computer on a larger problem to exceed the performance of a supercomputer on a smaller

problem!

Finally, even supercomputers have memory limitations. The use of sparse matrix
technology has allowed us to handle problems with 20,640 observations (Pace and Barry
(forthcoming)). A dense spatial weight matrix would have required 3.58 gigabytes (double

precision), which would have further exacerbated the overall computational difficulties.
C. MONTE CARLO EXPERIMENT TIMINGS

Simulating a CAR need not take very long. To show this, we measured times in the
different computational stages for simulating 250 regressions for a particular case (¢=.5). It
took 4.07 seconds from the time the matrix C and the log-determinants were loaded to
generate X and other matrices needed and to perform the decompositions. It took 17.52
additional seconds to generate the 250 spatially autocorrelated realizations of Y. This
involved computing a Cholesky decomposition of (I - ¢C) and solving a 2,905 by 2,905
system 250 times. Sparsity provides an incredible boost to these computations. The
computation of the 250 maximum likelithood estimates took only 70.91 seconds longer.
Hence, the total time for computing 250 was 92.5 seconds (conditional upon the

precomputation of the determinants and C).
D. MONTE CARLO EXPERIMENT RESULTS

The simulation results in Table II match some of those reported in the literature using
regular lattices.$ First, the maximum likelihood estimator slightly underestimates the true
differencing parameter, @. However, both estimators show very small amounts of bias,
especially when examining the median values of 6”[’,@15. Second, the variance of both
estimators decreases with rising @. The inequality restrictions do not seem to affect the

results much except for when @is .1. In this case, the inequality aids both estimators.

$8 See Haining (1990, p. 135-137) and Cressie (1993, p. 477) for a review of studies finding these effects.
13

E. PROFILE LIKELIHOOD PLOTS

As an example of the use of simulation for inference, Figures 2a, 2b, 2c, and 2d show
the profile likelihood plots for @, across 25 iterations for @ = .05, .25, .5, .95. The asterisk
on each profile likelithood curve denotes the maximum point. The vertical line segment
from the lowest to the highest curve shows the location of the true value of @. The large dot
denotes the mean while the symbol x denotes the median for all the profile likelithoods.
Figures 2a and 2d (¢ = .05, .95) illustrate how the information matrix approach could run
into problems. Note, in Figure 2c (¢ = .5) the profile likelihood 1s asymmetric. Figure 2b
shows an intermediary case (¢ = .25).

The simulated profile likelithoods distill great amounts of information about the
maxima of the likelihoods and their global behavior across possible realizations (simulation
trials). One can immediately obtain a feel for the robustness of inference for the important

spatial differencing parameter, @.
4. CONCLUSION

In a spatial context, maximum likelithood techniques have a reputation of being slow to
compute, prone to error through local optima, and offering only asymptotic inference. The
approach adopted here to computing conditional autoregressions attacks each of these
problems. First, the use of sparse matrices and restructuring the sum-of-squared errors
function greatly accelerates computations. Second, the evaluation of the likelihood over a
grid of values of the important spatial differencing parameter greatly enhances robustness
to local optima. Third, the quick simulation of the conditional autoregression coupled with
the profile likelihood information provides a wealth of information for conducting
inference in all sample sizes.

As an 1llustration of the efficacy of these techniques, we computed (a) 250 simulated
conditionally autoregressive vectors of Y of 2905 observations; (b) 100 determinants of a
2,905 by 2,905 matrix; and (c) computed 250 estimates with the profile likelihood values.
This took 135.8 seconds (43.3 seconds for the determinants and 92.5 for the estimates). In
contrast, Li (1995) on a smaller problem took longer on a supercomputer to calculate the
determinants than we accomplished on a personal computer.

Hopetully, additions like these to the spatial statistics toolbox will enable users to help

cope with the increasing flow of spatial information.

14

ACKNOWLEDGEMENTS

We both would like to thank the University of Alaska for its generous research support.
In addition, Pace would like to acknowledge support from the Center for Real Estate and
Urban Economic Studies, University of Connecticut. Finally, we would like the thank Bill

Hughes for having discussed the paper at the American Real Estate Society meetings.

15

Bibliography
Barry, Ronald P., and R. Kelley Pace. (1997). “Kriging with Large Data Sets Using Sparse

Matrix Techniques,” Communications in Statistics: Computation and Simulation, 26.

Barry, Ronald P., and Jay M. Ver Hoef. (1997). “Blackbox Kriging — Kriging without
Specifying Variogram Models,” Journal of Agricultural, Biological, and Environmental
Statistics.

Besag, Julian E. (1974). “Spatial Interaction and the Statistical Analysis of Lattice Systems,”
Journal of the Royal Statistical Sociely, B 36, 192-236.

Besag, Julian E. (1975). “Statistical Analysis of Non-lattice Data,” The Statistician, 24, 179-
95.

Cressie, Noel A.C. (1993). Statistics for Spatial Data, Revised ed. New York: John Wiley.

George, Alan, and Joseph Liu. (1981). Computer Solution of Large Sparse Positive Definite
Systems, Englewood Cliffs: Prentice-Hall.

Gilley, O.W,, and R. Kelley Pace. (1995). “Using Inequality Restrictions to Tame
Multicollinearity in Hedonic Pricing Models,” Review of Economics and Statistics, 77,
609-621.

Golub, G. H., and C. F. Van Loan. (1989). Matrix Computations, second edition, John
Hopkins.

Haining, Robert. (1990). Spatial Data Analysis in the Social and Environmental Sciences,
Cambridge University Press.

Ho, Shu-Yen, and Jerome Klotz. (1992). “Sparse Matrix Methods for Unbalanced
Multifactor Analysis of Variance and Covariance,” Journal of Statistical Computation and
Simulation, 41, 55-72.

L1, Bin. (1995). “Implementing Spatial Statistics on Parallel Computers,” in: Arlinghaus, S.,
ed. Practical Handbook of Spatial Statistics, (CRC Press, Boca Raton), 107-148.

Mardia, K.V., and A.J. Watkins. (1989). “On Multimodality of the Likelihood in the Spatial
Linear Model,” Biometrika, 76, 289-295.

Meeker, W.Q)., and L.A. Escobar. (1995). “T'eaching about Approximate Confidence
Regions Based on Maximum Likelihood Estimates,” The American Statistician, 49, 48-
53.

Ord, J.K. (1975). Estimation Methods for Models of Spatial Interaction, Journal of the
American Statistical Association, 70, 120-126.

Pace, R. Kelley, and Ronald Barry. (1997). “Sparse Spatial Autoregressions,” Statistics and
Probability Letters, 33, 291-297.

Pace, R. Kelley, and O.W. Gilley. (1993). “Improving Prediction and Assessing
Specification Quality in Non-Linear Statistical Valuation Models,” Journal of Business
and Economics Statistics, 11, 301-310.

Ripley, Brian D. (1981). Spatial Statistics, New York: John Wiley.
Ripley, Brian D., (1988). Statistical Inference for Spatial Processes, Cambridge: Cambridge
University Press.

16

Rubinstein, R.V. (1981). Simulation and the Monte Carlo Method, New York: Wiley.

Sone, Akio, and Daniel Griffith. (1995). “Irade-Offs Associated with Normalizing Constant
Computational Simplifications for Estimating Spatial Statistical Models,” Journal of
Statistical Computation and Simulation, 51, 165-184.

Warnes, J.J., and Brian Ripley. (1987). “Problems with Likelihood Estimation of
Covariance Functions of Spatial Gaussian Processes,” Biometrika, 74, 640-642.

Zimmerman, Dale. (1989). “Computationally Exploitable Structure of Covariance Matrices
and Generalized Covariance Matrices in Spatial Models,” Journal of Statistical
Computation and Simulation, 32, 1-15.

17

Table I — Determinant Computation Times

Ordering Time per 100 Determinants
Random 24,772.00
Original 310.33
Reverse Cuthill-McKee 338.78
Column Minimum Degree 65.03
Symmetric Minimum Degree 43.28

18

0.1000
0.2500
0.5000
0.7500
0.9000

Table II — ML CAR Simulation Statistics

mean(,)

0.0971
0.2463
0.4969
0.7477
0.8981

median(Eg,, ;)

0.1000
0.2500
0.4950
0.7450
0.8950

19

a Q)

0.0515
0.0493
0.0394
0.0262
0.0151

ra/nge(’(b;nl)

0.2700
0.3000
0.2400
0.1450
0.0800

500

1000

1500

2000

2500

Figure 1a — Original Ordering

500

1000

1500
nz = 17659

20

2000

2500

Figure 1b — Reverse Cuthill-McKee Ordering

O b, T T T

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500
nz = 17659

21

500

1000

1500

2000

2500

Figure 1c — Column Minimum Degree Ordering

-
-

. -
. U X
- - Yo
[. cary A
s-"x'.‘
. q
- i O F s
Lo Wl
- gy bl
X
_ :..-,f_*_
LXNY o
% :‘l; | | | |
0 500 1000 1500 2000 2500
nz = 17659

22

Figure 1d — Symmetric Minimum Degree Ordering

500

1000

1500

2000

] g .
' 4
3 5 -
- . ¥
!
i w ,
. .;z c! u
‘
.‘u.
: :
A e Ny . 5
M i
s ’ o
g 3
.] i
. I3 .
1 .
? o]
H K

2500

. o
s,

- - - . -
L . . | gl S, W LS ale e

1500 2000

nz = 17659

500 1000

23

Scaled Log-likelihood

Figure 2a — Profile Likelihood for ¢ of 0.05
3800 T T T T

W
N
o
o

2600 ! ! ! ! ! ! ! ! !
0

24

Scaled Log-likelihood

Figure 2b — Profile Likelihood for ¢ of 0.25

3800

3700

3600

3500

3000

2900

2800
0

0.1

0.2

0.3

0.4

0.5

25

0.6

0.7

0.8

0.9

Figure 2c - Profile Likelihood for ¢ of 0.50
3700 T T T T

3600,

3500

w
N
o
o

Scaled Log-likelihood
w
w
o
(@)

w
N
o
o

3100

3000

2900
0

26

Figure 2d — Profile Likelihood for ¢ of 0.95
3400 T T T T T

32001

3000

2800

2600|

Scaled Log-likelihood
N
N
o
<

2200
2000
1800 _
1600 N
1400 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
?

27

