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ABSTRACT:

Spatial estimators usually require the manipulation of n” relations among n
observations and use operations such as determinants, eigenvalues, and inverses whose
operation counts grow at a rate proportional to n”. This paper provides ways to quickly
compute estimates when the dependent variable follows a spatial autoregressive process,
which by appropriate specification of the independent variables can subsume the case
when the errors follow a spatial autoregressive process. Since only nearby observations tend
to affect a given observation, most observations have no effect and hence the spatial weight
matrix becomes sparse. By exploiting sparsity and rearranging computations, one can
compute estimates at low cost. As a demonstration of the efficacy of these techniques, the
paper provides a Monte Carlo study whereby 3107 observation regressions require only 0.1
seconds each when using Matlab on a 200Mhz Pentium Pro personal computer. In
addition, the paper illustrates these techniques by examining voting behavior across US

counties in the 1980 presidential election.
ACKNOWLEDGMENTS:

We would like to thank the University of Alaska for its generous research support. In
particular, we would like to thank Todd Lee for his comments. In addition, Pace would like
to thank the Center for Real Estate and Urban Economics, University of Connecticut for its
support. We would both like to thank the referees and the editor for their careful reading
of the manuscript and the resultant suggestions which have led to considerable

improvements.



Quick Computation of Spatial Autoregressive Estimators

INTRODUCTION

The examination of empirical data over space, with explicit recognition of the
influence each observation has upon the others, has made large gains since the seminal
contributions of Whittle (1954). For example, Ord (1975) proposed an algorithm involving
eigenvalues which made spatial estimation practical for small to moderate sized data sets.
In addition, Griffith (1988), Anselin (1988), Haining (1990), Anselin and Hudak (1992),
and others have worked on the implementation of spatial estimation and have provided
actual code in major languages for computing spatial estimates.

Despite these advances much work needs to be done to extend the benefits of spatial
estimation to larger data sets made increasingly available by the widespread use of
geographic information systems. Spatial estimators by necessity must examine the relation
between each observation and every other observation. This leads to the use of n by n
matrices where n represents the number of observations. Quickly, the logistics spiral out-of-
control: a 10,000 observation problem creates a 10,000 by 10,000 matrix which would
require 800MB of storage (double precision). Computational counts for operations such as
determinants and inverses grow with the cube of n. Point estimates alone create these
computational exigencies — inference can further exacerbate the computational demands.

As an additional problem, traditional maximum likelihood techniques require non-
linear optimization techniques using either analytic derivatives or finite difference
approximations. Unfortunately, these can fail to find the global optimum and do so
without informing the user of their failure. For example, Ripley (1988, p. 11-15) provides

an example with numerous local optima in a one-parameter profile likelthood problem.



Hence, an ideal spatial estimator would (a) handle large data sets; (b) handle point
estimation and inference quickly; and (c) not rely on local non-linear optimization
algorithms. This paper provides algorithms which achieve all of these goals.

The main weapon against these problems 1s sparseness, the prevalence of zeros in a
matrix. The zeros arise because only nearby observations directly affect each other.
Sparseness greatly accelerates computations and reduces storage requirements. For
example, sparseness allows us to compute 100 determinants of 3107 by 3107 matrices in 83
seconds. Moreover, while the dense version of these matrices would require 77MB, the
sparse version requires less than 1MB. A secondary method is based on reorganizing the
computations in the likelihood to avoid iteration and to solve equations as opposed to
computing inverses.

We examine the case where the dependent variable follows a spatial autoregressive
process.' This case can subsume the autoregressive process in errors case when the
independent variables include variables with their spatial lags (Anselin 1988, p. 227).?

To illustrate our technique, we provide an example and a simulation using U.S.
counties or their equivalents. Counties have many attractive characteristics as a
geographical entity. First, they tend to have stable definitions over recent time in contrast
to census tracts and blocks. Second, many variables are available at this level of
aggregation. For example, USA Counties on CD-ROM contains 2,844 variables across 3,141
counties or their equivalents across the U.S. These data cover many topics of interest such
as age, agriculture, crime, housing, income, education, and elections. More aggregation
would destroy the geographical nature of the data and less aggregation often reduces data
availability because of problems with ensuring the privacy of respondents.

As our empirical example, we model voting behavior across space. Many countries
have automatic voter registration and compulsory voter turnout. In contrast, the relatively
low rate of voter registration and turnout in the U.S. generates considerable comment.

Most of the discussion centers around variables such as income, traditionally discussed
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without explicitly considering spatial effects. However, political offices and parties have
traditionally been organized in hierarchies using such geographical entities as precincts,
wards, counties, and states. It seems plausible that the effects of voting across space cannot
be completely described by a small number of observable independent variables. To what
degree do the observable independent variables versus the spatial effects describe voting
behavior across US counties? We show how our techniques facilitate investigating the
question of the relative importance of these two components.

In addition, we conduct a Monte Carlo experiment involving 22,500 regressions of
3107 observations per regression using the same spatial weight matrix employed in the
empirical voting example. The simulation demonstrates how sparsity greatly reduces the
difficulty of generating vectors of spatially dependent variates. As we show, it takes, on
average, only 0.1 second each using the Matlab language on a 200Mhz Pentium Pro to
generate a spatially dependent vector and to find the resultant estimates.

The next section presents the model, likelihood function, and estimation procedures.
Latter sections show the role of sparsity, illustrate the techniques with a voting example,

and discuss a Monte Carlo study of the estimator. The final section presents the key results.
A QUICK SPATIAL AUTOREGRESSIVE ESTIMATOR

This overall section discusses estimation of a spatial autoregressive process in the
dependent variable. Part 1 presents the model and its likelithood, part 2 discusses the
estimated generalized least squares (EGLS) and maximum likelihood (ML) estimation of
the model, while part 3 provides a means to conduct inference without computing

information matrices, and part 4 examines the computation of likelihood ratio tests.
1. The Spatial Autoregressive Likelihood Function

When the dependent variable exhibits spatial autocorrelation, the simultaneous

autoregression estimator corrects the usual prediction of the dependent variable,

Y = X3 +¢&, by a weighted average of the values on nearby observations, DY.
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Y-aDY =X +¢ (1)

where D represents an n by n weighting matrix with Os on the diagonal (the observation
cannot predict itself) and a represents the autoregressive parameter.” We could also

rewrite (1) as (2).
(1-a)Y +a(I =D)Y =XB +¢ (2)

Hence, we are looking for some optimal convex combination of Y in levels and its spatial
first differences (I-D)Y. To maintain the interpretation of a weighted average, the rows of D
sum to 1 as implied by (3) below. Such weighting matrices are said to be row-standardized
(Anselin and Hudak 1992, p. 514). A non-zero entry in the jth column of the ith row
indicates that the jth observation will be used to adjust the prediction of the ith observation
(z #j). After correcting for these interactions, the simultaneous autoregressive (SAR) models
assume the residuals, €, are independently and normally distributed.! These assumptions

are summarized as:
@ D, =0 0O

) S D, =1 0i
2 Z 3)

(c) 0=sa<l
(d) €~ N(0, o*I)

As an illustration of how to construct D, compare the distance d; between every pair of

observations j and ¢ to d,

em

the distance from observation ¢ and its mth nearest neighbor. It

seems reasonable to set to 0 the direct influence of distant observations upon a particular
observation. Accordingly, assign a weight of 1 only to observations whenever d;; 1s greater

than 0 and is less than or equal to d,, as in (4),

vm

0<d; <d,, 1fand only ifw, =1. 4)



Subsequently, one could normalize the initial weights so that z D, =1 thus making it

J=1
%]

a row-standardized weight matrix.

Finally, the profile likelihood function for the autoregressive model in (1) appears in

(6),

L(B,a,0%) =C +In|I —aD)| {g)ln(SSE) (6)

where C represents a constant and SSE denotes sum-of-squared errors.”

2. Estimated Generalized Least Squares Computations

If one knew the value of a, the generalized least squares estimator (GLS) would

unbiasedly estimate B. When the generalized least squares estimator depends upon an

estimated parameter, it becomes the estimated generalized least squares estimator (EGLS)
which behaves differently than GLS. Unfortunately, EGLS leads to substantial bias in
estimating o in a spatial context (Ripley 1981, p. 91). Taking (1) and forming the SSE
yields (7).

SSE = (Y —aDY -XB,) (Y —aDY - XB,) (7)
Conditional upon a, the optimal solution for 3, (Anselin 1988, p. 181) 1s,

B, = (X'X)"X'(I —aD)Y =B, —aB, (8)

where B, =(X'X)"'X'Y and B, =(X'X)"' X'DY . Substituting (8) into the SSE function in (7)

yields (9),



SSE = (Y - XB, —aDY +aXB,) (Y - XB, —aDY +aXB,)
SSE = (e, —0e,)' (e, —0Qe,) =ele, —20e)e, +0 2el}ed

9)

where ¢, represents the residuals from an ordinary least-squares (OLS) regression of Y on
X and ¢, represents the residuals from an OLS regression of DY on X.
Interestingly, if one simply wishes to compute EGLS one could form the first order

conditions as in (10).

0SSE
da

= 2e¢le, +20¢le, (10)

This leads to the simple solution in (11).

-1
a(/ghl = (ellled) e:leu (1 1)

3. Maximum Likelihood Computations

Returning to the maximum likelihood approach, one could rewrite the log-likelihood
function by substituting the expression for the SSE in (9) into the log-likelihood function in

(6). After dropping the constant, this yields (12).

L(B,a,0%) =In|I —aD)| —(g]ln(el',en —20¢)e, +aele,) (12)
We wish to maximize the log-likelihood over a by selecting a vector of length m of values

over [0,1) which we label a, =(,0,,...0,) and evaluate the log-likelithood at each of the

m

values contained in a, as shown in (13).

_L(B,O(I,OQ)_ _ln|1 - GID|_ i In(ele, —20,ele, +aie)e,) ]
L(B,a,,0%) 1n|1 - G2D| ; In(ele, = 20,ele, +05ee,)
) ) (E) (1)
_L(B’am’oj)_ _1n|1 - amD|_ _ln(etzeu - 2am€(’leu +a fne(’led)_

Given (a) the scalars ele , ¢ ¢

0707

and ¢ ¢ and (b) the vector of log-determinant values

0

associated with a_, evaluating the likelihood in (13) becomes quite easy. Picking the
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element of o, which yields the maximum value of the vector of log-likelihood values, a

v ml>

requires very little time. Usually, the main difficulty lies in computing In|/ —aD].

From a computational standpoint, the vectorization of the problem avoids the
relatively high overhead incurred by invocation of non-linear optimizers and their
normally sequential nature. In computational environments with fast vector operations,
such sequential operations can greatly reduce performance.

The use of a finite set of a will cause some small granularity in the chosen values a,, ,
but it should not prove difficult to make the granularity small relative to the statistical
precision of the estimated a,,. While this approach may suffer a small loss of precision
relative to non-linear maximization, evaluating the log-likelihood function over a grid

offers the advantage of robustness.
4. Avoiding Computation of the Information Matrix

Computation of the information matrix often becomes expensive in a spatial context.
Inspection of the information matrix in Ord (1975, p. 124-125) or in Anselin (1988, p. 76-
77) shows it requires, among other computations, an n by n inverse and multiplication of
two n by n matrices. Moreover, its usual formulation requires the eigenvalues of the spatial
weight matrix. Finding the eigenvalues of a large matrix demands substantial
computational resources.

In addition, the information matrix approach works best when the profile likelithoods
are quadratic in a. However, most plots of the profile likelithood display substantial
asymmetry (Ripley 1988, p. 14). In such cases, as Meeker and Escobar (1995) and others
forcefully argue, profile likelihood techniques can outperform the information matrix
approach. Finally, the information matrix approach requires enough “smoothness” to
make second derivatives well-behaved.

Fortunately, since the technology previously outlined facilitates rapid maximization of

the likelihood, this provides an alternative route to inference. For example, the speedy



maximization of the likelithood function allows one to compute restricted least squares
estimates for B,,B,, maximize the likelihood, and form a likelihood ratio test for each
hypothesis.

In (14) appears the formula for the restricted least-squares estimator given the linear

hypotheses RB, =r (Judge et al. 1988, p. 235-264).
Bacrs =By +(XX)"R[R(X'X)" R 1" (r - RB,) (14)

For a single hypothesis such as 3, =0, R is 1 by &, r 1s a scalar, the expression

[R(X'X)" R'T" reduces to a scalar, and evaluation of B,_,, occurs rapidly. For example, one

could evaluate B, =0 for each j separately. This would yield a likelihood ratio test for the
significance or lack of significance of each variable which would supplant the need to
compute the information matrix for forming the usual asymptotic ¢ statistics.

More generally, for a joint hypothesis comprised of & parts, Rish by k,risah by 1

vector, the expression [R(X'X)™" R']™ reduces to an & by & matrix. Provided the number of

parts of the joint hypothesis, &, is substantially smaller than the number of variables, £,

evaluation of 3

a-—rest

proceeds quite rapidly.
As a more detailed example, suppose interest centers on whether the variable X, and

its spatial lag DX, significantly affect the overall regression involving 3 basic variables and

their spatial lags for a total of 6 variables (assume mean centering to avoid an intercept).

This question leads to the joint hypothesis B, =0 and B, =0. Hence, the matrix R and the

Vector r appear as,

X] X9 X DX} DXy DXg
01 00 0O 0
R = 7=
000 01O 0
While one could drop variables to implement hypotheses such as 8, =0, the use of

restricted least squares avoids recomputing the moment matrix (X'X ) and its inverse

((X'X)™), a relatively lengthy task when n and k become large.’ In addition, restricted least-



squares can handle more general specifications such as the joint hypothesis

B, =land B, =1-0;.
SPARSITY AND COMPUTATIONS

If differencing an observation with its nearby neighbors removes most of the effects of
autocorrelation, the spatial weighting matrix D can be quite sparse. For example, if an
observation displays error dependency with its nearest m neighbors, only m non-zero
entries exist per row of D. Thus, D will contain nm non-zero elements out of n* possible
elements. This produces a m/n proportion of non-zero elements, a popular measure of
sparsity. For example, with this problem we used four neighbors for each observation.
Hence, D has sparsity of 4/3107 (0.13%). This represents a very high level of sparsity which
Increases as 1 grows.

Sparsity results in a number of computational gains. First, it dramatically decreases the
storage needed for D and (I — aD) . Using traditional dense techniques, D requires
77.28MB of storage (double precision). Using sparse matrix techniques, D requires less
than 1MB of storage. Naturally, this divergence grows with n. The use of sparse matrix
technology has allowed us to handle problems with 20,640 observations (Pace and Barry
forthcoming).

Second, sparsity greatly accelerates computations. For example, multiplying the n by n
matrix D by the n by k matrix X requires O(kn*) operations using dense matrices. Barring
computational bookkeeping, the equivalent sparse operation requires O(knm) operations.
The real benefits come when computing determinants, inverses, or solving systems of
equations. All of these operations can build upon the LU decomposition of a matrix
through Gaussian elimination and all require O(rn”) operations when using dense matrices
(Golub and Van Loan 1989). Sparsity, however, can totally change the order of the number

of operations required in these computations. For example, if (/ —aD) had a band

structure with lower bandwidth p and upper bandwidth ¢, the LU decomposition of
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(I —aD), would require O(2npq) operations (Golub and Van Loan 1989, p. 151). Hence, for

fixed bandwidths the computations grow linearly with », the number of observations.

Unfortunately, the existence of a pure band structure does not arise very often. Figure
la shows the actual plot of the non-zero elements in (I —aD). Each of the blocks on the
diagonals represent states. The dispersed off-diagonal elements represent counties
contiguous with those from a different state. The existence of such dispersed off-diagonals
could make it difficult to achieve computational gains. However, one can permute the rows
or columns of (I —aD) using the reverse Cuthill-McKee algorithm to create a variable band
matrix as shown in Figure 1b. Figure 1b makes the gains of exploiting sparsity obvious.
Less obviously, Figure 1c shows the plot of (I —aD) permuted using the column minimum
degree algorithm. Counterintuitively, this ordering usually produced the fastest LU
decomposition times. See George and Liu (1981) for a discussion of the reverse Cuthill-
McKee, minimum degree, and other orderings useful in accelerating the computation of
matrix decompositions.

While the actual mechanics of these algorithms may seem quite involved, the intuition
is simple. If one had many equations to solve, the fewer variables in each equation the
better (more sparsity preferred). It seems intuitive to arrange the equations so that each
one uses variables present only in nearby equations (low bandwidth preferred). Ideally, one
would like to order the equations so that one could solve the first one for a variable, then
take this variable’s value, substitute it into the second one, solve for the second variable,
and so on. Gaussian elimination and the LU decomposition allow one to perform precisely
this procedure. Hence, these algorithms formalize and swiftly execute a natural set of

computations.
We computed In|l —aD| for 100 values of a over [.005, .015, ... .995]. Figure 2 shows

the plot of the log-determinants versus a. Table 1 shows the timings associated with

computing the LU decomposition using the original, random, reverse Cuthill-McKee, and
column minimum degree orderings for (I —aD) . As Table 1 makes clear, the ordering of
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the rows and columns matter, with the column minimum degree ordering reducing
execution times by 91.98% over the original ordering. The column minimum degree
ordering also reduced execution times by 58.71% over the more intuitive reverse Cuthill-
McKee ordering. As a worst case scenario, the random ordering produced computational
times worse than the optimal ordering by a factor of 105.95. All computations used the
Matlab language running on a 200Mhz Pentium Pro computer.

To place these results in perspective, Li (1995) took the eigenvalue route to computing
determinants. Li used an IBM RS6000 Model 550 and a CM5 parallel processing
supercomputer. The CM5 had 32 processors each with 32MB of local memory and four
vector units. For a 2500 by 2500 spatial weight matrix the RS6000 required 8515.07
seconds while the CMb required 45.78 seconds. Adjusting for size differences
((3107/2500)%) these times would go to 16345.26 and 87.88 seconds for a 3107 by 3107
problem. Hence, the use of sparse technology allows personal computers to approach
supercomputer performance for this problem.

The use of sparsity does not preclude the use of supercomputing technology. A
substantial amount of development has gone into devising parallel sparse routines (Saad
1996, p. 324-422). Employing supercomputers and sparseness could vastly extend the
range of computable spatial problems. Moreover, as demonstrated herein, one can easily
vectorize spatial estimators.

Note, the smoothness of |I - aD| suggests we could evaluate it over fewer values of a or
concentrate the computations around a likely to occur. We have achieved good
performance with the use of a 20th degree polynomial, which would reduce the number of

determinant computations above by a factor of five.
VOTING ACROSS COUNTIES

In this section we illustrate the techniques presented in previous sections using data on

the votes cast in the 1980 presidential election across U.S. counties. In what follows, part 1
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discusses the data employed, part 2 presents the two models used, part 3 gives the
estimation results, while part 4 demonstrates the use of the likelithood ratio tests discussed

In a previous section.
1. Voting Data

Specifically, we used the geographic centroids from all the counties (or their
equivalents) in the continental U.S. from the 1990 Census which recorded votes in the
1980 presidential election. This yielded a matrix D with 3,107 rows and 3,107 columns.”
We picked 1980 because the presidential election cycle of every four years corresponded to
the census data collection cycle of every ten years.

We collected data on the total number of votes cast in the 1980 presidential election
per county (VOTES), the population in each county of 18 years of age or older (Pop), the
population in each county with a 12th grade or higher education (EDUCATION), the

number of owner-occupied housing units (HOUSES), and the aggregate income (INCOME).
2. Models

We fitted two models by OLS and maximum likelihood, respectively. We elected to
examine the log of the proportion of votes cast for both candidates in the 1980 presidential
election. Hence, we can express our dependent variable as In(PRVOTES)= In(VOTES/ POP) =

In(VOTES)-In(Por). We fitted the following model via OLS:

In(PRVOTES)=InterceptP, +In(POP)B,+In(EDUCATION)B; +In(HOUSES)[3,
+In(INCOME)[3;+¢€

We fitted the following model which subsumes the previous model via maximum

likelihood:

In(PRVOTES)=InterceptP, +In(POP)B,+In(EDUCATION)B; +In(HOUSES)[3,
+In(INCOME)[3; + DIn(PoP)B;+ DIn(EDUCATION)[3,+ DIn(HOUSES )34
+ DIn(INCOME)3y+ DIn(PRVOTES) 0 +¢€
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This looks at the same fundamental model, but adds to it the spatial lags of the dependent

and independent variables.
3. Estimation Results

As Table 2 documents, both the OLS and maximum likelihood predictions showed
reasonably good relative fit with R*s of .5242 and .7123. As this indicates, maximum
likelithood using the spatial information displayed considerably lower error than OLS. In
fact, the SSE from OLS of 49.2825 was 78.12% higher than the SSE of 27.6686 from
maximum likelthood. Moreover, the median absolute error from OLS of .0864 was 40.49%
higher than the median absolute error of .0615 from maximum likelihood.

The OLS estimates displayed the expected signs with the exception of income which
was negative and significant. The variable In(PoP) had a negative sign for both OLS and
maximum likelihood. However, this arises because we use the proportion of votes cast
which effectively removes a coefficient of 1 from both sides. Given the measured
coefficients on In(POP) were greater than -1, population has the expected positive overall
effect on votes but the proportion voting declines with population per se. Similarly,
maximum likelihood on the expanded model displayed the expected signs on all the
variables. Inspection of the maximum likelihood results show the probable source of OLS’s
difficulties. The significance of spatially lagged income, which the OLS model omits, and
its correlation with income, led OLS to adjust towards the negative and significant omitted
variable.

Relative to OLS, maximum likelihood ascribes a smaller influence of education and a
larger influence of home ownership upon the propensity to vote. Naturally, the large
coefficient on the lagged dependent variable suggests the existence of geographically

correlated but omitted variables.
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4. Inference

The second section discussed means of avoiding computation of the information
matrix in a spatial setting. When the likelihood costs little to compute, likelihood ratio tests
have substantial appeal. In this case, the restricted maximum likelihood estimates do not
require much computational resources. We test the hypotheses that each of the basic
independent variables and their spatial lags have no effect upon the regression. As we have
nine total independent variables (four basic variables, four spatially lagged basic
independent variables, and an intercept), the matrix R has 4 rows and 9 columns. It
contains all zeros except for a one in each row in the position of the variables whose effects
we wish to set to zero. The vector r is a 4 by 1 vector of zeros.

Table 3 displays the results of the likelihood ratio tests for the deletion of all spatially
lagged variables, of the spatially lagged dependent variable, and all of the basic
independent variables with their lags. All of the variables or combinations of the variables
were statistically significant. It required only .09 seconds to compute the restricted
likelihoods for the deletion of the basic independent variables with their lags using the
techniques presented earlier.

The likelihood associated with the OLS regression on the basic variables coupled with
the maximum likelihood obtained for all variables give the likelihood ratio test for the
significance of all spatially lagged variables. The likelihood associated with a=0 from the
profile likelihood coupled with the maximum likelihood for all variables obtained give the
likelihood ratio test for the significance of the spatially lagged dependent variable, Dy.
These likelihoods require no additional computations but appear as a byproduct from the
basic procedure and hence impose little computational cost.

The significance of a, the parameter estimate of the spatially lagged dependent
variable, and the significance of the other spatially lagged independent variables shows the

substantial contribution geographically correlated variables make to the overall fit.
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AN ILLUSTRATIVE SIMULATION

This section examines a simulation of 22,500 regressions each using 3107
observations. Part 1 discusses the data, part 2 gives the timings of the simulation

computations, and part 3 provides the statistical results.

1. Stmulation Data

To provide verisimilitude to the simulation, we chose the same spatial weighting
matrix as employed in the empirical voting example.
In the simulation, we:
1. Generated uniform random variables for nine columns of X and used a constant
for the other column.
2. Set B to a vector of ones.
3. Let a, equal [.01, .05, .1, .25, .5, .75, .9, .95, .99].
4. Set 0 to each of [.1, .5, 1, 2, 10].
5. Generated a common set of 250 N(0,1) vectors of 3107 elements each using the
Matlab normal random number generator. We perform this operation once for
the entire simulation. Scaling the common N(0,1) errors by ¢ generates the N(0,
0”) random variables. This practice, referred to as “correlated sampling”

(Rubinstein (1981)) greatly reduces the variance in Monte Carlo experiments.

We subsequently generated the autocorrelated dependent variable, y, according to (15),
y=( -aD)"'XB +o(I —aD)'u (15)

where u represents an n by iter matrix of N(0,1) random variates where iter represents the
number of iterations in the experiment. In actuality, we solved the corresponding equation
system in (16) for the coefficients Z via Gaussian elimination using an LU decomposition

rather than computing the inverse as this goes much faster.
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(r-ap) 7z =[XB u]
nx(iter +1) nx(iter +1) ( 1 6)

Z=[I-aD)'XB (I -aD)™u]

nxn

Compare this to the usual inverse formulation,

(I-aD)Q =1
Q=(-aD)" (17)

NXN

Z =Q[XB u]=(-aD)'[XB u]=[(/ ~aD)"'XB (I —aD)"u]

nx(iter+1 . i
nX(iter +1) nXn - px(iter +1) nxn nX(iter +1)

Relative to (16), (17) requires solving a larger system (n by n instead of n by (iter+1)) and
subsequently multiplying an n by n matrix by a n by iter +1 matrix (O(n*(iter+1))). Since
iter+1 usually 1s much smaller than », the inverse method takes substantially longer to yield

the same results.
2. Timing Results from the Monte Carlo Experiment

Table 4 contains the results from the Monte Carlo experiment using the
autoregressive dependent variable model. Table 4 contains 45 cases resulting from nine
autoregressive parameter values, a, and five levels of error variability, 0. Each case contains
the average of the results from five runs of 100 iterations each. The runs required 36.8
minutes in total. Thus, each maximum likelihood spatial autoregression and simulated

dependent variable needed 0.1 seconds of computational time, a very low figure.
3. Statistical Results from the Monte Carlo Experiment

The results in Table 4 match some of those reported in the literature using regular
lattices.® First, the maximum likelihood estimator slightly underestimates the true
differencing parameter, a. Second, the EGLS estimator overestimates 0. Note, two versions
of the EGLS estimator appear. The first one comes from (11). The second one comes from
picking the value of a off the grid which minimizes SSE. Hence, one could consider EGLS,

an inequality restricted EGLS estimator. It has the same granularity problem as the
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maximum likelihood estimator and hence makes a better comparison with the maximum
likelihood estimator. For example, examine the cases where a equals 0.99. In these cases,
both the EGLS, and ML give the same value of the square root of the mean squared error
(RMSE) of 0.05. However, as the comparison between EGLS, and EGLS, reveals, for most
cases the granularity problem does not greatly affect the results. The inequality restricted
nature of EGLS, does lead to it performing differently than EGLS, at the endpoints.

Third, the maximum likelithood estimator greatly outperforms EGLS in most cases. In
fact, maximum likelihood displays a factor of 14.81 better performance at the worst case
for EGLS (a=.5, 0=10). EGLS becomes most acceptable for high a and low 0. Fourth, all
of the estimators perform worse as 0 rises.

Each estimator reaches the nadir of its performance at various points depending upon
both a and 0. For example, the maximum likelithood estimator reaches its nadir at o of 0.1

with 0 of 10. The EGLS, estimator reaches its nadir at a of 0.5 with ¢ of 10.
CONCLUSION

A variety of methods can greatly accelerate the computation of large scale spatial
autoregressions. This paper explored the use of sparse matrix techniques, formulating the
profile likelihood to avoid iterative computations, and using restricted least squares to form
likelihood ratio tests as opposed to computing information matrices. As illustrations of the
efficacy of these techniques, we looked at an empirical example at the county level and
conducted a Monte Carlo experiment with 22,500 spatial autoregressions. Despite the
formidable size of the regressions (3107 observations), these cost only 0.1 seconds each to
generate the spatially dependent variable and estimate the coefficients.

The voting example showed the power of geographic information to help clarify social
phenomenon. OLS on the non-spatial variables displayed 78% higher sum-of-squared
errors than maximum likelihood on the combination of spatial and non-spatial variables.

Relative to OLS, maximum likelihood ascribes a smaller influence of education and a
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larger influence of home ownership upon the propensity to vote. More importantly, OLS
shows income has a significant, negative effect on the proportion voting while maximum
likelihood shows income has a small positive but statistically insignificant eftect. However,
spatially lagged income has a significant, negative effect upon voting.

Hopetully, additions like these to the spatial statistics toolkit will allow computations to
keep pace with the ever-increasing flow of geographic information and bring spatial

techniques into more routine usage.
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Table 1 — Execution Times in Seconds Versus Ordering Algorithm

Ordering Algorithm LU(Z —aD)
Original 10.35
Reverse Cuthill-McKee 2.01
Column Minimum Degree 0.83

Random 87.94



Table 2 — OLS and ML Estimates of Voting Characteristics

Intercept

In(Population > 18 years of Age)
In(Population with Education > 12 years)
In (Owner Occupied Housing Units)
In(Aggregate Income)

Lagged In(Population > 18 years of Age)
Lagged In(Population with Education > 12 years)
Lagged In(Owner Occupied Housing Units)
Lagged In(Aggregate Income)

Optimal a

R2

SSE

Median |e|

Log(Likelihood)

n

k

Time

Bois
0.9814
-0.8464
0.5167
0.4291
-0.1439

0.5242
49.2825
0.0864
-6307.1
3107

5

.03 sec

tols
20.9680
-38.3780
33.4241
24.0222
-7.2680

Bui
0.4582
-0.7174
0.1910
0.4513
0.0266
0.3999
0.0513
-0.2906
-0.1252
0.6150

0.7123
27.6686
0.0615
-5679.1
3107

10

.09 sec

tmi
10.2893
-31.3059
8.1971
28.8363
1.2089
-13.2999
1.9398
-12.9525
-4.5015



Table 3 — Likelihood Ratio Tests for the Deletion of Different Variables

Deletion of:

All Spatially Lagged Variables

Dy

In(Population > 18 years of Age)
In(Population with Education > 12 years)
In (Owner Occupied Housing Units)

In(Aggregate Income)

Unrestricted
Likelihood

-5679.0911
-5679.0911
-5679.0911
-5679.0911
-5679.0911

-5679.0911

Restricted
Likelihood

-6307.0766
-6222.4552
-6120.5844
-5809.8701
-6045.2873

-5692.6655

Likelihood
Ratio

1255.9710
1086.7282
882.9866
261.5580
732.3924

27.1488

Number of
Hypotheses

5

1
2



Table 4 — True Vs. Estimated Parameters and RMSEs Across 500 Autoregressions

a

0.01
0.01
0.01
0.01
0.01

0.05
0.05
0.05
0.05
0.05

0.10
0.10
0.10
0.10
0.10

0.25
0.25
0.25
0.25
0.25

0.50
0.50
0.50
0.50
0.50

0.75
0.75
0.75
0.75
0.75

0.90
0.90
0.90
0.90
0.90

0.95
0.95
0.95
0.95
0.95

0.99
0.99
0.99
0.99
0.99

0)

0.1
0.5
1.0
2.0
10.0

0.1
0.5
1.0
2.0
10.0

0.1
0.5
1.0
2.0
10.0
0.1
0.5
1.0
2.0
10.0

0.1
0.5
1.0
2.0
10.0

0.1
0.5
1.0
2.0
10.0
0.1
0.5
1.0
2.0
10.0

0.1
0.5
1.0
2.0
10.0

0.1
0.5
1.0
2.0
10.0

am/

0.0104
0.0140
0.0165
0.0174
0.0175

0.0503
0.0497
0.0496
0.0493
0.0493

0.1002
0.0996
0.0993
0.0987
0.0986

0.2503
0.2494
0.2491
0.2487
0.2483

0.5001
0.4997
0.4988
0.4984
0.4980

0.7500
0.7494
0.7487
0.7482
0.7483

0.9000
0.8993
0.8992
0.8988
0.8988

0.9498
0.9493
0.9492
0.9491
0.94388

0.9890
0.9888
0.9883
0.9885
0.9883

a egls2

0.0105
0.0172
0.0236
0.0284
0.0307

0.0510
0.0605
0.0733
0.0841
0.0896

0.1013
0.1209
0.1462
0.1674
0.1791

0.2528
0.2982
0.3594
0.4093
0.4367

0.5043
0.5771
0.6731
0.7514
0.7940

0.7546
0.8197
0.9055
0.9738
0.9944

0.9046
0.9388
0.9864
0.9950
0.9950

0.9545
0.9727
0.9949
0.9950
0.9950

0.9935
0.9950
0.9950
0.9950
0.9950

a(/glsl

0.0102
0.0121
0.0140
0.0153
0.0158

0.0507
0.0605
0.0731
0.0835
0.0889

0.1012
0.1207
0.1464
0.1677
0.1791

0.2527
0.2983
0.3591
0.4094
0.4368

0.5041
0.5771
0.6731
0.7514
0.7937

0.7537
0.8197
0.9054
0.9742
1.0109

0.9021
0.9387
0.9865
1.0248
1.0453

0.9511
0.9717
0.9987
1.0204
1.0320

0.9902
0.9945
0.9998
1.0038
1.0059

RMSE
ml
0.0051
0.0116
0.0155
0.0172
0.0179

0.0053
0.0163
0.0220
0.0244
0.0252

0.0053
0.0160
0.0222
0.0249
0.0259

0.0052
0.0154
0.0205
0.0234
0.0245

0.0050
0.0129
0.0170
0.0192
0.0199

0.0050
0.0088
0.0114
0.0128
0.0135

0.0050
0.0056
0.0067
0.0074
0.0077

0.0050
0.0050
0.0052
0.0054
0.0056

0.0050
0.0050
0.0050
0.0050
0.0050

RMSE
e

0.0052
0.0154
0.0253
0.0330
0.0375

0.0053
0.0226
0.0398
0.0537
0.0610

0.0053
0.0285
0.0561
0.0790
0.0917

0.0056
0.0513
0.1130
0.1632
0.1910

0.0056
0.0782
0.1742
0.2525
0.2951

0.0050
0.0702
0.1559
0.2241
0.2445

0.0050
0.0391
0.0866
0.0950
0.0950

0.0050
0.0231
0.0449
0.0450
0.0450

0.0050
0.0050
0.0050
0.0050
0.0050

ols2

RMSEeglsl
0.0042
0.0201
0.0336
0.0438
0.0493

0.0042
0.0223
0.0401
0.0542
0.0617

0.0043
0.0282
0.0563
0.0792
0.0917

0.0047
0.0514
0.1127
0.1634
0.1910

0.0052
0.0782
0.1742
0.2525
0.2948

0.0043
0.0701
0.1558
0.2245
0.2612

0.0023
0.0388
0.0866
0.1250
0.1455

0.0013
0.0218
0.04388
0.0707
0.0823

0.0003
0.0046
0.0100
0.0141
0.0162



Figure 1a — Original Ordering
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Figure 1b — Reverse Cuthill-McKee Ordering
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Figure 1c — Column Minimum Degree Ordering
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' See Can (1992) and Can and Megbolugbe (forthcoming) for examples using the spatial
autoregressive dependent variable process.

? See Dubin (1988) and Pace and Gilley (forthcoming) for examples using the spatial
autoregressive €rror process.

¥ One could construct X to include [X,,, | DX

sub

] in which case this model would subsume the
SAR autoregressive error model as a special case.

* Specification of spatial autoregressions follow either the simultaneous (SAR) or conditional
(CAR) approaches. These lead to similar likelihood functions for normal errors. Geographical
applications employ the SAR approach more often than the CAR approach (Anselin 1988, p.
32-33).

° See Anselin (1988, p. 182). Our constant includes an extra term as we use SSE instead of the
estimated variance.

® This suggests that one could extend the spatial autoregressive dependent variable estimator
to handle inequality restrictions. See Pace and Gilley (1993) and Gilley and Pace (1995) for
more information on inequality restrictions in regression settings.

" Three counties in the continental U.S. showed zero votes in the election. These were unusual
entities such as Yellowstone National Park.

® Haining (1990, p. 135-141) discusses some simulation results on regular lattices. Griffith

(1995) conducted some recent simulation studies.



