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1. See Fan, Hung, and Wong (2000) for a recent derivation.
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Likelihood Dominance Spatial Inference

Many users estimate spatial autoregressions to perform inference on regression para-
meters. However, as the sample size or the number of potential models rise, computa-
tional exigencies make exact computation of likelihood-based inferences tedious or
even impossible. To address this problem, we introduce a lower bound on the likeli-
hood ratio test that can allow users to conduct conservative maximum likelihood in-
ference while avoiding the computationally demanding task of computing exact
maximum likelihood point estimates. This form of inference, known as likelihood
dominance, performs almost as well as exact likelihood inference for the empirical ex-
amples examined. We illustrate the utility of the technique by performing likelihood-
based inference on parameters from a spatial autoregression involving 890,091
observations in less than a minute (given the spatial weight matrix). 

The computational challenges of likelihood-based spatial estimation problems
have led to the introduction of a variety of alternative approaches such as the pseudo-
likelihood technique of Besag (1975) or the instrumental variable technique of Kele-
jian and Prucha (1998). Such techniques may produce good point estimates, but they
fail to determine the statistical significance of selected regression parameters, an im-
portant goal for many users of spatial autoregressions. 

We set forth a computationally simple approach to inference that employs esti-
mates based on lower and upper bounds for the spatial autoregressive parameter in
the model. Our approach maps these bounds on the autoregressive parameter to a
lower bound on the likelihood ratio associated with testing hypotheses on regression
parameters. Of course, this also translates into a lower bound on the deviance, which
equals twice the difference between the profile log-likelihood of the overall model
and the restricted model. By construction, a deviance has a minimum of 0 and is dis-
tributed as chi-squared with degrees-of-freedom equal to the number of hypothesis
under test.1 The lower bound on the deviance constructed in this fashion represents



a form of “likelihood dominance” (Pollack and Wales [1991]), which permits rejection
of restricted models in some cases without computation of the unrestricted model. 

Bounds on the spatial autoregressive parameter required for this method could
come from a number of sources. For example, bounds could arise from a combina-
tion of point estimates and prior information derived from Monte Carlo experiments.
Estimates from similar models based on alternative data samples might represent an-
other source for bounding the spatial autoregressive parameter. Even simple bounds
that restrict the spatial autoregressive parameter to the interval [0,1) can prove ade-
quate for conducting inference in some situations. Finally, better bounds exist such as
the Monte Carlo bounds proposed by Barry and Pace (1999) and the quadratic
bounds proposed by Pace and LeSage (2002). Both methods provide greater accu-
racy for somewhat higher computational cost. 

The relation between the bounds on the spatial dependence parameter and the re-
sulting bounded deviance tests derives from a partitioning of the overall deviance
concerning the significance of some hypothesis into two separate deviances. The first
deviance depends only on the ratio of two quadratic forms, which does not require
computation of the troublesome log-determinant term used in maximum likelihood
estimation. The second deviance depends on the difference between (a) the value of
the profile log-likelihood from the unrestricted model evaluated at the optimal au-
toregressive parameter estimate, and (b) the same profile log-likelihood evaluated at
a restricted autoregressive parameter estimate. Significance of either deviance im-
plies significance of the overall deviance test, since the minimum of any deviance
equals 0 by construction. The first deviance (a) is easily calculated and the second de-
viance (b) is relatively small in many applied situations. Section 1 develops these ideas
and provides a graphical illustration of these relations. 

To illustrate the method, we apply four simple bounded intervals to three different
data sets to explore performance of the proposed bounded deviance tests in an em-
pirical setting. For two of the empirical examples we compute both exact and
bounded deviance tests to assess the relative performance of both forms of inference.
These two examples involved over 1,000 hypotheses tests, with the results from this
evaluation suggesting that bounded deviance tests often yield the same inferences as
those from exact deviance tests. We term any two testing procedures that produce the
same set of inferences as qualitatively identical. In the first example based on a sam-
ple of county-level election data, up to 100% of the bounded deviance tests yielded
qualitative results identical to those from actual deviance tests. In the second exam-
ple based upon census tract-level data on consumer expenditures, up to 99.8% of the
bounded deviance tests yielded qualitative results identical to those from actual de-
viance tests. 

The third example of the proposed approach illustrates the ability of the method to
quickly produce inferential results for a large problem (a hedonic housing model
using 890,091 observations from U.S. census blocks). Given a spatial weight matrix,
the subsequent estimation took under a minute and provided decisive inference on
all model parameters. 

Section 1 develops these ideas and provides a graphical illustration of these rela-
tions. Section 2 examines the performance of both forms of inference in three empir-
ical examples, and Section 3 concludes with the key implications. 

1. SPATIALLY ROBUST INFERENCE

In this section we describe two likelihood dominance relations that can produce in-
ferences regarding hypothesized parameter values in spatial autoregressive models.
These likelihood inferences do not require computing maximum likelihood estimates
for alternative models involved in the tests. 
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2. One can form similar decompositions between the log-determinant and a function of the error term
for other continuous densities.

3. See Anselin (1988), Bavaud (1998), as well as Griffith and Lagona (1998) for definitions of spatial
weight matrices. See Anselin (1988) and Ord (1975) for more on the SAR model.

4. See Besag (1975) for more on the CAR model.
5. See Haining (1990) for more on the moving average model as well as a discussion of the other types

of spatial autoregressions.

To begin, let the covariance matrix depend on the scalar parameter α, representing
the magnitude of spatial dependence in the model. If the errors, ε, follow a normal
distribution with the parameterized covariance matrix Ω(α), (1) expresses the profile
log-likelihood (Anselin [1988, p. 182]), 

(1)

where C designates a constant, y represents n observations on the dependent vari-
able, and X represents n observations on k independent variables (one of these
columns equals a vector of ones when using an intercept in the model).2 Equation (2), 

(2)

represents a generalized least-squares (GLS) estimate parameterized by α. At the op-
timal value of α, denoted by α̃, the estimate β̃(α̃) becomes the maximum likelihood
estimate of β. 

This formulation can represent a variety of specific spatial models. For example,
the simultaneous autoregression (SAR) specification arises when Ω(α)�1 � (I � αD)′
(I � αD) where D represents a spatial weight matrix.3 The conditional autoregression
(CAR) specification arises when Ω(α)�1 � (I � αD) for symmetric D.4 The moving
average autoregression (MA) specification arises when Ω(α) � (I � αD) for symmet-
ric D.5 Similar profile log-likelihoods exist for the Gaussian, exponential, and spheri-
cal covariance specifications as well as for spatially autoregressive models or for mixed
regressive spatially autoregressive models. 

Likelihood ratio hypotheses tests involve a comparison of restricted and unre-
stricted estimates. One can impose linear restrictions of the form Rβ � r involving J
linear restrictions where R represents a J by k restriction matrix, and r represents a J
by 1 vector. In this case, the restricted estimates take the form shown in (3), with the
associated restricted profile log-likelihood shown in (4). 

(3)

(4)

Equation (4) expresses the profile log-likelihood as a function of the parameter αR.
The value, α̃R maximizing (4) represents the restricted likelihood estimate for the pa-
rameter αR. Twice the difference between the unrestricted and restricted profile log-
likelihoods, 2(L(α̃) � LR(α̃R)), is often referred to as the deviance. For normal
maximum likelihood, the deviance follows a χ2(J) distribution asymptotically. Critical
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values based on this distribution can be used to assess the probability of obtaining a
higher test statistic under repeated sampling. If V* represents the critical value asso-
ciated with the chosen level of significance, a hypothesis test is defined as statistically
significant when the deviance exceeds V*. For example, imposing a single restriction,
α � 0 (equivalent to OLS), permits testing the statistical significance of the spatial
autoregressive parameter α. The associated deviance test would follow a χ2(1) distri-
bution and a calculated deviance exceeding the critical value of V* � 6.63 for χ2(1)
would allow rejection at the 1% level of the least-squares model associated with an
hypothesis of no spatial dependence. 

The development of bounded deviance tests relies on this background as well as
the existence of bounds on the spatial dependence parameter. One possible set of
bounds would be the interval defined by λ�1

min and λ�1
max where the λ denote eigenval-

ues of D, the spatial weight matrix. This represents the domain of α subject to |I �
αD| � 0 for all α. 

Another bound could be based on restricted generalized least-squares (EGLS)
estimates along with a maximizing choice of α, α̂EGLS. For the common case of row-
stochastic weight matrices and positive dependence, 0 � α̃ � min(1,α̂EGLS). This oc-
curs because the EGLS estimate, α̂EGLS, exhibits positive bias relative to maximum
likelihood and the maximum value for the autoregressive parameter is 1 for row-sto-
chastic weight matrices. 

The quadratic bounds proposed by Pace and LeSage (2002) provide another ap-
proach. These bounds provide shorter intervals than the simpler bounds above while
avoiding computational difficulties associated with determining the eigenvalues for
large spatial weight matrices. The confidence interval associated with the computa-
tionally efficient approximation to the log-determinant proposed by Barry and Pace
(1999) constitutes another slightly more elaborate and accurate set of bounds. 

Finally, other approaches exist. Techniques proposed by Golub and Von Matt
(1995) to compute confidence bounds might work well and approximations such as
Besag (1975), Griffith and Sone (1995), Kelejian and Prucha (1998), as well as
Smirnov and Anselin (2001) might lead to bounds on the spatial parameter. 

To develop the bounded tests, assume the existence of bounds to the autoregres-
sive parameter that lie in the interval associated with a positive determinant. 

ASSUMPTION. λ�1
min � αL � αR � αU � λ�1

max .

Proposition 1 formalizes the bounded deviance tests. 

PROPOSITION 1. If 2(L(αB) � LR(αB)) � V* for all αB ∈ [αL,αU], then 2(L(α̃) �
LR(α̃R)) � V*.

PROOF. The overall deviance 2(L(α̃) � LR(α̃R)) partitions into the sum of two de-
viances 2(L(α̃) � LR(α̃R)) � 2(L(α̃R) � LR(α̃R)). By the premise of this proposition and
Assumption 1, 2(L(αB) � LR(αB)) � V* for all αB in the interval [αL,αU] containing α̃R.
Thus, the second deviance is significant while the first deviance must be non-negative
since unrestricted log-likelihoods must exceed or match restricted log-likelihoods.
Therefore, the overall deviance is significant and this proves the proposition. QED. 

COROLLARY. If S(αB) � V*, where S(αB) � nln for all

αB, then 2(L(α̃) � LR(α̃R)) � V*.

PROOF. Substitution of the definitions of the profile log-likelihoods into the
premise of Proposition 1 leads to the cancellation of the constants and determinants
from the component profile log-likelihoods. Rearrangement of the expanded premise
yields the result. QED. 
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To provide insight regarding use of these bounds for inference, the data in Table 1
is used as an example. The table contains latitude, longitude coordinates for nine
census divisions, associated information on the log of commuting time per capita, and
the log of the median gross rent for nine observations. We fit the model model y �
αWy � Xβ � ε, where y is the log of median gross rent and the single independent
variable X is the log of commuting time per capita along with a constant vector. A
row-stochastic weight matrix W was constructed using a Delaunay triangle routine. 

Figure 1 shows the resulting profile log-likelihoods for the unrestricted model and
a restricted model based on deletion of the commuting time per capita independent
variable. Deletion of the only non-constant independent variable leads to an autore-
gressive model y � intercept � αWy � ε. In the figure, dot symbols were used to
represent points on the profile log-likelihoods and asterisks symbols denote the opti-
mal value for both unrestricted and restricted profile log-likelihoods. Naturally, the
curve with higher values represents the unrestricted profile log-likelihood. 
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TABLE 1
Commuting Example Data

Division Latitude Longitude Commute Rent

1 44.3928 70.6069 4.0616 6.3154
2 41.8597 76.4974 3.9475 6.1800
3 42.5678 86.8034 4.1309 6.0088
4 42.6922 97.0084 4.2818 5.9081
5 33.9472 80.8570 4.0489 6.1137
6 34.5472 87.0706 4.2093 5.8051
7 32.2965 97.3402 4.1822 5.9375
8 40.3386 110.2123 4.2418 6.0162
9 47.7500 123.5000 4.0193 6.3630
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FIG. 1. Commuting Data Profile Log-likelihood



In the figure, two sets of bounds on the value of α are depicted. The two star sym-
bols show bounds for the unrestricted model and the triangle symbols represent
bounds for the restricted model. Both sets of bounds on the autoregressive parame-
ters in the two models were constructed using quadratic bounds set forth in Pace and
LeSage (2002). 

The term (L(α̃R) � LR(α̃R)) corresponds to the vertical distance between the re-
stricted profile log-likelihood and the unrestricted model profile log-likelihood
curves. In Figure 1, the vertical line segment labeled “A” at α � α̃R shows the dis-
tance between the two curves. 

The term (L(α̃) � L(α̃R)) corresponds to the vertical distance between a point α̃R

on the unrestricted profile log-likelihood and the optimum point α̃ on the unre-
stricted profile log-likelihood. In Figure 1, this is depicted by the very short (almost
imperceptible) vertical line segment labeled as “B” extending below the asterisk on
the upper curve associated with the unrestricted profile log-likelihood. 

In Figure 1, the vertical distance between the restricted model profile likelihood and
the unrestricted model profile likelihood at the point α̃R (segment A) greatly exceeds
the vertical distance between a point α̃R on the unrestricted profile log-likelihood and
the optimum point α̃ on this unrestricted profile log-likelihood (segment B). 

Taking this a stage further, a user could easily compute the minimum vertical dis-
tance between the profile log-likelihood of the unrestricted and restricted models
using a range of values based on the interval between the apex of the two triangle
symbols in Figure 1, which represent the bounds on α̃R. This minimum vertical dis-
tance between the unrestricted and restricted log-likelihood curves over the bounded
interval serves as a lower bound to the overall likelihood difference. In Figure 1, this
minimum vertical difference almost equals the entire difference between the unre-
stricted and restricted profile log-likelihood maxima. For the bounds based on the in-
terval between the two triangle symbols in Figure 1, the minimum difference over
this interval is 3.75, and twice this distance is 7.5. The test statistic of 7.5 exceeds the
one percent critical value of 6.63 for the chi-squared distribution with one degree-of-
freedom. 

To make this even more intuitive, we can recast these statistics as signed root devi-
ances. The signed root deviance applies the sign of the coefficient to the square root of
the deviance (Chen and Jennrich 1996). These statistics behave similar to t-statistics
for large samples, and can be used in lieu of t-statistics for hypothesis testing. We will
follow this approach in our empirical illustrations. In this example, the signed root de-
viance is 2.74, since the corresponding regression parameter has a positive sign. For
this simple example, these results compare favorably to those based on the exact like-
lihood ratio of 7.85, and the value of 2.80 taken by the exact signed root deviance. 

In summary, this example illustrates how inferences based on computationally sim-
ple and fast bounds can produce qualitatively identical inferences to those derived
from exact maximum likelihood estimates. If interest centered only on a test for the
impact of commuting time on rental values, users could accurately draw such an
inference without actually computing exact maximum likelihood estimates. If users
desire point estimates as well, they can employ a number of log-determinant approx-
imations (e.g., Griffith and Sone 1995, Barry and Pace 1999, as well as Pace and
LeSage 2003). The likelihood dominance inferential techniques proposed here allow
users to engage in certain types of inference without producing maximum likelihood
estimates. For example, model diagnostics often reduce to inferences regarding a su-
permodel. Examples include the RESET test of Ramsey (1974) for model misspecifi-
cation, testing for spatial autocorrelation, which centers on rejection of α � 0, and
examination of different spatial weight matrices. In the latter problem, changing the
weight matrix requires recomputation of the log-determinant for exact estimates,
whereas likelihood dominance would allow more elaborate specification testing with-
out these computations. 
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6. Statistical significance provides a necessary, but not a sufficient condition for deeming a variable im-
portant. A statistically significant variable with an inconsequential magnitude may not meet the sufficient
condition from a subject matter perspective.

There are numerous ways of constructing bounds on the spatial dependence para-
meter α, so the ideas presented here do not require use of bounds determined with
the method of Pace and LeSage (2002). Indeed, we hope that the ability to draw ac-
curate inferences using bounds will stimulate future research into deriving alterna-
tive bounds. 

We conclude this discussion with some comments on cases where the approach
based on bounded deviances should succeed, and cases where the approach may fail.
The best case for bounded deviances occurs with variables whose deletion has no ef-
fect on the optimum dependence parameter (i.e., α̃R � α̃). In this case, the omitted
term (L(α̃) � L(α̃R)) vanishes and the bounds are sharp. Exclusion of variables with
little spatial character (or whose spatial character may not affect the model parame-
ters (cf., Getis and Griffith 2002) might fall into this category, as these should not
cause the restricted and unrestricted autoregressive parameters to vary. Another case
involves low autoregressive parameter values, since the bounds become exact when 
α � 0. 

A final case may arise in large samples. If the test statistics increase with the num-
ber of observations, n (Leamer 1988, pp. 290–95), this may serve to offset underesti-
mation of the actual deviance by the bounded deviance. Given a large exact test
statistic, underestimation of this statistic may still lead to a value that exceeds the crit-
ical value. This suggests that bounded deviances, or the associated signed root de-
viances, might perform well in large problems, one of their intended applications.6

The worst case for the deviance bounds occurs for variables whose deletion pro-
duces little change to the overall goodness-of-fit, while leading to a change in the op-
timum α̃R. In these cases, (L(α̃) � L(α̃R)) is relatively large. Exclusion of variables
with a primarily spatial character, such as a polynomial in the locational coordinates,
might change the optimum autoregressive parameter while not greatly affecting the
fit. However, an empirical illustration with such variables in the next section did not
reveal this type of problem. 

Proposition 1 and the Corollary represent a form of likelihood dominance result
described by Pollack and Wales (1991). One can also determine another type of like-
lihood dominance using bounds on the log-determinant. The following result ap-
peared informally in Pace and LeSage (2002). We repeat it here more formally using
notation consistent with the previous development. 

DEFINITION 2. Let LU(α) and LL(α) represent bounded profile log-likelihood func-
tions such that LU(α) � L(α) � LL(α) for all α. Let the bounded and exact profile log-
likelihoods have optima such that α̃U � α̃ � α̃L. Note, the upper bounded
log-likelihoods provide a smaller penalty to overfitting the autoregressive parameter
and thus the upper bounded log-likelihood also results in an overestimate of the au-
toregressive parameter. The converse holds for the lower bounded log-likelihood. In
addition, let LU

R(α) and LL
R(α) represent bounded restricted profile log-likelihood

functions such that LU
R(α) � LR(α) � LL

R(α) for all α. Let the bounded restricted and
exact restricted profile log-likelihoods have optima such that α̃U

R � α̃R � α̃L
R. 

PROPOSITION 2. If 2(LL(α̃) � LU
R(α̃R)) � V*, then 2(L(α̃) � LR(α̃R)) � V* .

PROOF. Let LL(α̃) � L(α̃) � ∆1 where ∆1 is a non-negative scalar since LL(α̃) � L(α̃)
by Definition 1. Similarly, let LU

R(α̃) � LR(α̃) � ∆2 where ∆2 is a non-negative scalar
since LU

R(α̃) � L(α̃) by Definition 1. Substituting these relations into 2(LL(α̃) �
LU

R(α̃R)) � V* yields 2(L(α̃) � LR(α̃R)) � 2∆1 � 2∆2. If 2(L(α̃) � LR(α̃R)) � 2∆1�
2∆2 � V* then 2(L(α̃) � LR(α̃R)) � V* � 2∆1 � 2∆2 � V* and this proves the propo-
sition. QED. 
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7. If users believe the conservative bias of the likelihood dominance inference has led to an insuffi-
ciently low test statistic, they can elect to employ a more accurate approximation. For example, the Barry
and Pace (1999) approximation allows continuous control on the trade-off between accuracy and speed. A
sufficiently good approximation should minimize any conservative bias from likelihood dominance infer-
ence.

8. The coordinates came from a Lambert conformal conic projection of the internal point centroids of
latitude and longitude of each county. The projection minimized the error along the 27.5 and 43.5 degree
parallels.

9. Anselin (1988, p. 127) notes that Casetti’s method assumes a trend surface without error. A trend
surface with error would imply heteroskedasticity in the residuals. In our simple illustration, rejection of
the null of no spatial heterogeneity is the focus of interest, rather than the exact form of spatial hetero-

To distinguish between the two results, we refer to likelihood dominance based on
Proposition 1 as likelihood dominance of the first kind (abbreviated LD1). We label
likelihood dominance using Proposition 2 as likelihood dominance of the second kind
(abbreviated LD2). Taken together, these likelihood dominance results can permit
inference without computing the full log-likelihood in various cases. 

Both forms of likelihood dominance serve as lower bounds to the deviance test sta-
tistics. Hence, likelihood dominance test statistics exceeding their critical values
imply rejection of restrictions under test. However, when likelihood dominance test
statistics fall below critical values this does not imply failure to reject the restrictions,
since the actual deviances may still exceed critical values. In these cases, likelihood
dominance statistics are biased conservatively.7

2. EMPIRICAL ILLUSTRATIONS

To illustrate likelihood dominance, Sections A and B present two empirical illus-
trations where the sample size permits comparison of results from both exact maxi-
mum likelihood and likelihood dominance inferences. Section C illustrates the speed
of likelihood dominance inference in an applied setting where the data set involves
890,091 observations, demonstrating that identical qualitative results arise from exact
and bounded deviance tests. 

2.1. Election Data

In this section we illustrate the two different forms of likelihood dominance using
data on votes cast in the 1980 presidential election across 3,107 contiguous U.S.
counties with complete data on selected variables. These sample data from Pace and
Barry (1997) contain information on the number of recorded votes in the 1980 presi-
dential election (Votes), the population 18 years of age or older (Pop), the population
with a 12th grade or higher education (Education), the number of owner-occupied
housing units (Houses), aggregate county-level income (Income), and locational coor-
dinates (Xc, Yc).8

A recurring theme in spatial econometrics is the interplay between modeling spa-
tial heterogeneity and spatial dependence (Anselin 1988, pp. 119–36). Casetti (1972)
devised one of the simplest schemes for modeling spatial heterogeneity based on in-
teracting independent variables with a polynomial surface in the locational coordi-
nates. Simultaneous autoregression (SAR) represents a common specification used to
model spatial dependence. We employ a more general model that subsumes these
two models and thus permits testing of the heterogeneity versus spatial dependence
hypotheses. Under the null hypothesis that spatial heterogeneity drives observed spa-
tial dependence, restricting the spatial autoregressive term to zero (α � 0) should re-
sult in a relatively small increase in the log-likelihood. In contrast, under the null
hypothesis that spatial dependence accounts for spatial heterogeneity, the terms in-
teracted with locational coordinates and the locational coordinates themselves should
not greatly augment the log-likelihood.9
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geneity. Rejection of an imperfect model relative to another imperfect model is in the spirit of likelihood
dominance where a superior model may exist, but does not have to be computed explicitly.

10. While the dependent variable is the log of a ratio, the log of the denominator appears on the right -
hand side, and thus the fit is exactly the same as a regression using ln (Votes) .

11. Due to the squaring, these were standardized for numerical stability.
12. The row-stochastic Delaunay spatial weight matrix D is similar (has the same eigenvalues) as a

reweighted symmetric version (Ord 1975). We use the symmetric version for the log-determinant approx-
imations and the row-stochastic version for statistical computations.

13. The Monte Carlo estimator used 10 iterations, exact computation for the first 2 moments and ap-
proximate computation for the remaining 28 moments.

To begin, we used the proportion of votes cast for both candidates in the 1980 pres-
idential election as our dependent variable, denoted as ln(PrVotes), which also equals
ln(Votes/Pop), or ln(Votes) � ln(Pop).10 The general model uses two different groups
of independent variables. Let U represent the 3,107 by 5 matrix formed by combin-
ing the four explanatory variables with a vector of ones denoted by 1. 

U � [1 ln(Pop) ln(Education) ln(Houses) ln(Income)]

Let S represent a quadratic polynomial in the locational coordinates,11 where the
multiplications are performed elementwise. 

S � [1 Xc X2
c XcYc Yc Y2

c]

The interaction of all columns in U and S defines the 3,107 by 30 matrix of inde-
pendent variables. 

X � U*S

We then estimate the model in (1) via maximum likelihood, 

y � Xβ � ε

where ε � N(0,Ω(α)), Ω(α) � σ2((I � αD)′ (I � αD))�1, and the spatial weight ma-
trix D is constructed using Delaunay triangles, reweighted so that D is row-stochastic
(i.e., D1 � 1).12

We employed four different types of bounds in computing likelihood dominance
statistics. A first set of simple bounds, 0 � α � 1 were used, with the signed root de-
viance statistics produced by this approach labeled SRD01. The second set of
bounds, 0 � α � min(1,α̂EGLS), produce statistics that we label SRDG. Result based
on the quadratic bounds proposed by Pace and LeSage (2002) were labeled SRDQ. A
final set of bounds were based on the endpoints from 99% confidence intervals pro-
duced by the Monte Carlo log-determinant estimator of Barry and Pace (1999).13 We
labeled likelihood dominance statistics produced by this approach SRDM. 

As to the bounds proposed by Pace and LeSage (2002), they showed that: 

(α � ln(1 � α))tr(D2) � ln|I � αD| � �0.5α2tr(D2) ,

for a symmetric weight matrix D. Of course, tr(D2) equals the sum of all squared ele-
ments for a symmetric spatial weight matrix. Running SAR at both the upper and
lower log-determinant bounds yields lower and upper bounds on the autoregressive
parameter. Performing this for both models, one where the independent variables are
restricted and the other where these are unrestricted, results in lower and upper
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bounds on the autoregressive parameter for both restricted and unrestricted parame-
ters. Given these bounds, test statistics for likelihood dominance of the first kind
(LD1) can be computed as described previously. 

Table 2 contains both exact and likelihood dominance test statistics, converted to the
more intuitive signed root deviance (SRD) form. As expected, exact signed root de-
viances (SRD) exceed or match the various likelihood dominance signed root deviances
in all cases. As an indication of the correspondence between the various likelihood
dominance statistics and exact likelihood-based results, we computed the median of the
ratios for these. The median of SRDM/SRD equals 0.99, that for SRDQ/SRD equals
0.93, whereas SRDG/SRD equals 0.72, and SRD01/SRD equals 0.67. 

Using the common t-statistic of 2 as a cutoff, all nineteen cases where exact SRDs
exceed 2 correspond to SRDMs statistics greater than 2. Thus, the exact and bounded
deviance tests result in qualitatively identical inferences in 100% of the tests. A simi-
lar result arises from comparing results based on SRDs and SRDQs. Both methods
result in qualitatively identical inferences in 100% of 19 cases. Turning to the SRDG
statistics, in 14 of 19 or 73.68% of the cases both exact SRDs and SRDGs exceed 2,
resulting in identical inferences. Finally, the SRD01 statistics also result in 14 of 19
cases where exact SRDs and SRDGs produce identical inferences. 
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TABLE 2
Likelihood Dominance for Election Data

Variables SRD SRDM SRDQ SRDG SRD01

Pop18 4.97 4.96 4.93 4.45 4.45
Edu 0.57 0.53 0.32 0.01 0.01
Home 7.3 7.28 7.09 5.64 5.64
Income 0.99 0.97 0.89 0.65 0.6
Xc 1.52 1.49 1.29 0.78 0.64
Xc

2 0.85 0.84 0.76 0.01 0.01
XcYc 4.56 4.53 4.2 3.37 2.93
Yc 0.13 0.12 0.04 0 0
Yc

2 3.07 3.03 2.69 1.69 1.05
XcPop18 3.93 3.92 3.83 3.63 3.63
Xc

2Pop18 3.97 3.96 3.87 3.63 3.59
XcYcPop18 0.9 0.9 0.89 0.71 0.71
YcPop18 3.51 3.5 3.4 2.31 2.31
Yc

2Pop18 2.89 2.88 2.79 1.84 1.84
XcEdu 4.07 3.97 3.59 2.56 2.4
Xc

2Edu 6.37 6.29 5.85 4.94 4.79
XcYcEdu 2.36 2.34 2.25 1.56 1.56
YcEdu 3.57 3.54 3.38 3.01 2.81
Yc

2Edu 1.89 1.85 1.61 0.92 0.65
XcHome 3.2 3.16 2.95 1.51 1.51
Xc

2Home 3.67 3.64 3.41 2.79 2.48
XcYcHome 10.38 10.38 10.32 9.44 9.44
YcHome 7.94 7.93 7.86 7.06 7.06
Yc

2Home 1.48 1.48 1.48 1.47 1.47
XcIncome 2.39 2.37 2.22 1.82 1.74
Xc

2Income 0.04 0.03 0 0 0
XcYcIncome 4.49 4.47 4.23 3.55 3.12
YcIncome 1 0.99 0.96 0.61 0.61
Yc

2Income 4.09 4.06 3.84 3.2 2.85
Intercept 1.06 1.04 0.94 0.73 0.73



Based on the data examined here, it would seem prudent to use the easily com-
puted quadratic Taylor bounds or the more accurate Monte Carlo log-determinant
estimator to form the bounds, as the other techniques do not perform very well.
However, these other techniques show how even small restrictions on α can lead to
likelihood dominance inference. 

This example can also be used to illustrate likelihood dominance of the second kind
(LD2). We first note that using SAR on variables in U alone results in an interval for
the likelihoods between �5761.28 and �5627.32. Since the log-likelihood from OLS
equals �6307.1 for these same variables, we can reject OLS because it falls well out-
side this SAR interval. We can use likelihood dominance of the second kind to reject
the Casetti expansion in favor of SAR based on U or a fortiori SAR based on S*U. To
see this, note that the true log-likelihood arising from SAR applied to the Casetti ex-
pansion (X) is between �5392.78 and �5332.47. Computing the deviance of the sec-
ond kind yields a test statistic of 2(�5392.78 � �5627.32) � 469.08, which is
considered in light of the presence of 25 extra variables in X that are not included in
U. This results in rejection of the SAR model based on variables U, despite the pres-
ence of 25 extra variables in X that are not in U. A Casetti expansion by itself (SAR ap-
plied to X with the restriction α � 0) has a likelihood of �5697.81, so a user could use
likelihood dominance of the second kind to reject the Casetti expansion in favor of
SAR based on U or a fortiori SAR based on S*U. 

2.2. Consumer Expenditure Data

To illustrate likelihood dominance inference in a different context, we collected
data on 51 consumer expenditures by census tract (taken from the 1999 Consumer
Expenditure Survey) and matched this with an intercept and 25 explanatory variables
from the 1990 Census. We selected typical explanatory variables such age, race, gen-
der, income, age of homes, house prices, and so forth. The 51 dependent variables in-
cluded observations on alcohol, tobacco, food, entertainment, and a variety of other
expenditure categories. Using only records with complete data yielded 54,584 census
tract observations. The unprojected internal point latitudes and longitudes served as
the locational coordinates. 

The total number of possible hypothesis tests associated with deleting a single ex-
planatory variable was 1,352 (51⋅26) which should constitute a large enough number
to provide an indication of the performance of likelihood dominance inference. We
estimated a SAR model using a row-stochastic Delaunay spatial weight matrix for
each of the 51 dependent variables. Table 3 contains the number of exact signed root
deviance statistics whose absolute value exceeded a critical value V* equal to 2 or 3
along with the proportion relative to an exact test. In addition, Table 3 contains anal-
ogous signed root deviance statistics based on likelihood dominance for the Barry and
Pace bounds (SRDM), Pace and LeSage quadratic bounds (SRDQ), EGLS bounds
(SRDG), and 0 to 1 bounds (SRD01). 
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TABLE 3
Likelihood Dominance for Consumer Expenditure Data

Test Critical Values SRD SRDM SRDQ SRDG SRD01

# exceeding V* � 2 1215 1212 1143 807 786
Proportion exceeding 2 1 0.998 0.941 0.664 0.647
Relative to an exact test 
# exceeding V* � 3 1124 1122 1036 705 700
Proportion exceeding 3 1 0.998 0.922 0.627 0.623
Relative to an exact test



For exact SRD statistics 1,215 of 1,352 possible parameters exceeded critical value
V* of 2. For SRDM bounds based on the Barry and Pace Monte Carlo method, like-
lihood dominance statistics exceeded the same critical value in 1,212 of 1,215 cases
(99.8%). Likelihood dominance statistics constructed from the Pace and LeSage qua-
dratic bounds SRDQ resulted in 1,143 or 94.1% of the exact number. Using the like-
lihood dominance statistics based on EGLS bounds, 807 exceeded the critical value
V* � 2, or 66.4% of the exact number. Finally, likelihood dominance statistics based
on 0-1 bounds produced 786 significant statistics or 64.7% of the cases as a result. Re-
sults based on a critical value V* � 3 showed a similar pattern of outcomes. 

We note that these tests based on individual regression parameters are not inde-
pendent. Hence, this example shows the technique meets a necessary condition
(good performance in at least one case), but this is not a sufficient condition for good
performance on other data. Nevertheless, the results suggest that likelihood domi-
nance inference may perform well in practice. 

2.3. Housing Data

To examine a data set where exact answers might prove tedious or even impossible
(for given computing facilities) to produce, we collected 1990 Census observations on
white population, black population, mean number of rooms, and mean price of hous-
ing from individual census blocks in the continental United States. This resulted in
890,091 complete data observations. As with previous examples, we used a spatial
weight matrix based on Delaunay triangles and estimated a SAR model y � Xβ � ε,
where y represented the log of mean housing prices, X contained an intercept plus
log of white population, black population, mean number of rooms, an as explanatory
variables, ε is distributed N(0,Ω(α)), and Ω(α)�1 � (I � αD)′ (I � αD).

The least-squares results presented in Table 4 suggest that white and black popula-
tions have disparate impacts on mean housing prices. Specifically, log of white popu-
lation has a coefficient of 0.211 while log of black population has a coefficient of
�0.022, a difference of 0.233. Spatial estimates based on the Monte Carlo log-deter-
minant estimator bounds and quadratic bounds show smaller magnitudes for coeffi-
cients on all independent variables except the intercept. In terms of the difference
between coefficients on log of white population and log of black population, this de-
clines from 0.233 under ordinary least-squares (OLS) to a maximum of 0.073 using
the Monte Carlo bounds or 0.086 using quadratic bounds. This suggests that dis-
parate black/white impact falls by more than a factor of three when measured by
Monte Carlo bounds relative to OLS, and thus shows the potentially important im-
pact of spatial methods on estimation and inference. The quadratic bounds place α in
an interval [0.79, 0.89], while the Monte Carlo bounds place α in the short interval
[0.88, 0.88]. Note, the upper and lower determinant bounds lead to an interval esti-
mate for β. For example, the estimated parameter associated with log of rooms fell
into the interval [0.5494, 0.5817] for the quadratic log-determinant bounds. Thus, the
technique provides both interval estimates as well as lower bounds on the deviance. 
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TABLE 4
Likelihood Dominance for Housing Data

Variables OLS SRD  OLS LBM UBM SRDM LBQ UBQ SRDQ

WhitePop 0.2115 401.4510 0.0650 0.0650 176.6333 0.0761 0.0603 166.8463
BlackPop �0.0220 �44.2715 �0.0147 �0.0147 �43.1965 �0.0189 �0.0128 �38.1505
Rooms 0.7691 236.1927 0.5600 0.5600 250.2206 0.5817 0.5494 248.9154
Intercept 9.1290 1062.8418 9.9600 9.9600 1265.2977 9.9122 9.9699 1258.6837
α 0.0000 0.0000 0.8800 0.8800 1040.0221 0.7900 0.8900 978.0480



14. We omitted estimates and SRDs for the 0 to EGLS bounds on the autoregressive parameter and for
0 to 1 bounds on the autoregressive parameter to conserve space. However, both bounds also yielded sig-
nificant SRDs.

15. The times are for a 1700� Athlon with three gigabytes of RAM using Matlab 6.5 on W2K. We used
function fdelw2.m to generate the Delaunay triangle based weight matrices, the function fsarld2.m to
compute SAR likelihood dominance inference and point estimates, and the function fdet_mc2.m to calcu-
late the Monte Carlo log-determinant approximation with confidence bounds. All of these can be found in
the Spatial Statistics Toolbox 2.0 at http://www.spatial-statistics.com.

16. One can extrapolate the exact results. As Smirnov and Anselin (2001) noted, the exact sparse matrix
methods proposed by Pace and Barry (1997) show an approximate quadratic increase in time with n. For
the 3,107 data set it required 0.64 seconds to compute the log-determinants. For 890,091 observations the
time would go to 14.5 hours, based on the quadratic relation with n. Computing the eigenvalues for the
3,107 observation data set required 377.23 seconds. Given the cubic increase in time for computing the
eigenvalues of a dense matrix, a straightforward computation of log-determinants via the eigenvalues
would take over 280 years, assuming one could avoid the memory constraints.

The likelihood dominance SRDs are smaller for all but one non-intercept variable
than corresponding OLS SRDS, but easily exceed conventional standards for signifi-
cance.14 For the mean number of rooms variable, likelihood dominance SRDs
(SRDM, SRDQ) are actually higher than the corresponding one for OLS. Since like-
lihood dominance SRDs are a lower bound, an exact SRD would be higher still. 

The SAR log-likelihood lies in the interval �5,240,332.8 to �5,136,523.0 for the
quadratic bound, between �5,177,606.01 and �5,176,232.9 for the Monte Carlo log-
determinant estimator bounds, while the OLS log-likelihood was �5,718,610.8.
Likelihood dominance of the second kind leads to clear rejection of the hypothesis 
α � 0. The SRD statistic in Table 4 is calculated by taking the square root of twice the
smallest difference between the interval and OLS log-likelihoods. 

It required just under 5 minutes to create the spatial weight matrix based on a
Delaunay triangle algorithm, just under 0.6 seconds to compute the quadratic log-
determinant approximations, and 5 seconds to perform SAR estimation with likeli-
hood dominance inference.15 In total, it required just seconds given the weight matrix
to estimate a spatial autoregression with 890,091 observations using the quadratic
bounds and to perform likelihood dominance inference that, in this case, proved as
decisive as results based on exact log-likelihoods. The more accurate Monte Carlo
log-determinant approximation required over a minute to compute. Nonetheless, it
yielded qualitatively identical inferences as the computationally faster quadratic ap-
proximation in this case. Attempts at exact computation of the log-determinant failed,
despite the presence of three gigabytes of memory.16

3. CONCLUSION

If the desire to conduct maximum likelihood inference on various parameters pro-
vides the motivation for estimating a spatial autoregression, paradoxically users may
not need to compute actual maximum likelihood estimates to conduct such inference.
In many cases users can compute lower bounds to the profile deviance that will ex-
ceed selected critical values needed to establish “significance.” The virtue of this ap-
proach lies in the low effort needed for calculating bounds relative to maximum
likelihood. 

The development of bounded deviance tests relies on a partitioning of the exact
deviance test into two separate deviances, where the first of these depends only on a
ratio of two quadratic forms, eliminating the need to compute a log-determinant
term. The second deviance depends on a difference in the log-likelihoods between
the autoregressive parameter estimate in the unrestricted and restricted models. We
show that this second deviance may not have a large magnitude in many cases. For
the first deviance, we can use bounds on the autoregressive parameter to narrow the
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possible range of values taken by this statistic. By selecting the lowest value of the sta-
tistics, we arrive at an implementable lower bound to the actual profile deviance. This
procedure avoids the necessity of computing the log-determinant term that impedes
computation of maximum likelihood estimates. The lower bound on the deviance
constructed in this fashion represents a form of “likelihood dominance” (Pollack and
Wales 1991). 

We compared exact inference and likelihood dominance inference results using
three empirical examples. In the first example, based on county-level election data,
bounded inference techniques yielded the same qualitative inferences as exact tech-
niques in the vast majority of cases, when using a common criterion of counting an
estimate with a t-statistic of 2 as significant. This result held true for bounds based on
two approaches, the quadratic bounds of Pace and LeSage (2002) and the Monte Carlo
bounds of Barry and Pace (1999). A second example was constructed from a spatial
data sample of 51 consumer expenditure categories and 54,584 census tract observa-
tions. Here the bounded inference technique (based on the common criterion of a 
t-statistic equal to 2 as significant) yielded results identical to those from exact tech-
niques in 99.8% (Monte Carlo) and 94.1% (quadratic) of the 1,352 possible cases. 

A third illustration examined housing at the census block level using a data set with
890,091 observations that would pose a computational challenge to deviance tests
based on exact methods. The likelihood dominance approach to inference required
under a minute to compute bounded inference when using quadratic bounds (given
the weight matrix). The Monte Carlo technique for determining bounds required less
than an additional minute. In both cases, bounded inference showed which variables
were significant and provided bounds on the parameter values as well. 

The likelihood dominance approach to inference has a number of potential uses.
First, a mathematical relation exists between deviances and confidence intervals, so
the technique could lead to the construction of confidence intervals. Second, the
technique can provide likelihood-based inference for estimators that have either no
inferential framework or have only an approximate inferential framework. Examples
include the pseudo-likelihood estimator of the conditional autoregressive model of
Besag (1975), or the instrumental variable estimators of Kelejian and Prucha (1998).
One could use these estimators to compute point estimates, and rely on likelihood
dominance for inference. Third, the ability to handle large sample sizes suggests that
likelihood dominance inference would be useful in spatial data mining applications.
Fourth, simplicity of the code facilitates its incorporation within GIS or other types of
interactive software. Finally, the speed of the technique promotes exploration of dif-
ferent model specifications and thus has potential to improve the robustness of infer-
ences drawn from spatial data. 
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