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Abstract:  

Parsimonious regression models using locational data often yield non-normal, heteroskedastic, 
and spatially dependent residuals. This manuscript develops a model which simultaneously 
performs spatial and functional form transformations to mitigate these problems. We apply the 
model to 11,006 observations on housing prices in Baton Rouge. For these data, the model 
reduces the interquartile range of the errors in the untransformed variable’s space by 38.38% 
relative to a simple model using the untransformed variable. In addition, the pattern of residuals 
improves dramatically and the generalized additive model exhibits interesting transformations. 
Finally, the manuscript documents the computational innovations which make it possible to 
perform the maximization of the likelihood in under 10 seconds. 
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Simultaneous Spatial and Functional Form Transformations 

I. Introduction 

Technological advances such as the global positioning system (GPS) and low-cost, high-quality 

geographic information systems (GIS) have led to an explosion in the volume of large data sets with 

locational coordinates for each observation. For example, the Census provides large amounts of data 

for over 250,000 locations in the US (block groups). Moreover, geographic information systems can 

often provide approximate locational coordinates for street addresses (geocoding). Given the volume 

of business information which contains a street address field, this allows the creation of extremely 

large spatial data sets. Such data, as well as other types of spatial data, often exhibit spatial 

dependence and thus require spatial statistical methods for efficient estimation, valid inference, and 

optimal prediction.  

Several barriers exist to performing spatial statistics with large data sets. Spatial statistical 

methods require the computation of determinants or inverses of n by n matrices. Allowing for space 

does not necessarily cure all of the problems encountered in typical data. For example, simple 

models fitted to housing and other economic data often exhibit heteroskedasticity, visible problems 

of misspecification for extreme observations, and non-normality (e.g., Goodman and Thibodeau 

(1995), Subramanian and Carson (1988), Belsley, Kuh and Welsch (1980)). Simultaneously attacking 

these problems along with spatial dependence for large data sets presents a challenge.  

Functional form transformations provide one technique which can simultaneously ameliorate all 

of these problems. For example, better specification of the functional form could reduce spatial 

autocorrelation of errors given spatial clustering of similar observations. While not guaranteed, 

functional form transformations often simultaneously reduce heteroskedasticity and residual non-

normality. Because of the potential interaction between the spatial transformation and the functional 

form transformation, it seems desirable to fit these simultaneously. 

Accordingly, we wish to examine the following transformation of the dependent variable, 

 � � � �� � �− α θ  

where D represents a n by n spatial weight matrix, α represents the spatial autoregressive parameter, 

and � � �θ  represents the dependent variable transformation parameterized by a vector of o 

parameters, θ . Least squares would not work for this problem as it would reduce the sum-of-squared 
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errors by reducing the range of the transformed variable. As an extreme case OLS could choose θ  to 

make � � �θ  almost constant for a sufficiently flexible form and a regression with an intercept term 

would yield almost no error. Hence, this problem requires maximum likelihood with a Jacobian for 

the spatial transformation and a Jacobian for the functional form transformation.  

The above form of the problem involves transformation of the functional form of the dependent 

variable first and the spatial transformation second. This seems a more natural formulation than 

transformation of the functional form of ( )I D Y��  since the functional form of the dependent 

variable often has an interesting subject matter interpretation. However, spatial transformation first 

followed by functional form transformation is feasible and may offer some advantages. 

The Box-Cox transformation is the most frequently used in regression. Recently, Griffith, 

Paelinck, and van Gastel (1998) discussed the importance of transformations for spatial data and 

examined bivariate Box-Cox/Box-Tidwell transformations of the dependent and independent 

variable in a spatial autoregression. The use of a parameter for the dependent variable as well as a 

parameter for the independent variable provided substantial flexibility in the potential 

transformation. Note, the Box-Cox/Box-Tidwell approach has an additional overhead in spatial 

problems as one must compute the spatially lagged value of the new transformed variables at each 

iteration. 

We take a different route in modeling the functional form of the variables in a spatial 

autoregression. Specifically, we use B-splines (De Boor (1978), Ramsay (1988)) which are piecewise 

polynomials with conditions enforced among the pieces. The knots specify where each local 

polynomial begins and ends and the degree specifies the amount of smoothness among the pieces. A 

spline of degree 0 has no smoothness, a spline of degree 1 is piecewise linear, a spline of degree 2 is 

piecewise quadratic, and so forth.  

Relative to the common Box-Cox transformation, the B-spline transformations do not require 

strictly positive untransformed variables and can assume more complicated shapes (Box and Cox 

(1964)). The standard one-parameter Box-Cox transformation either has a concave or convex shape. 

The B-spline transformation can yield convex shapes over part of the domain and concave shapes 

over the rest of the domain. Moreover, B-splines can yield more severe transformations of the 

dependent variable than the Box-Cox transformation. Burbidge (1988) discusses the deficiencies of 

the Box-Cox transformation and the need for more severe transformations of the extreme values of 

the untransformed dependent variable. These beneficial features do have a price. Relative to 
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transformations such as the Box-Cox, splines may require substantially more degrees-of-freedom. 

This could create problems for small data sets or those with low amounts of signal-to-noise (i.e., low 

R2).  

Computationally, there are three components to the log-likelihood for this problem. These 

include (1) a spatial Jacobian; (2) a functional form Jacobian; and (3) the log of the sum-of-squared 

errors term. 

To address the spatial Jacobian part of the log-likelihood, we use the techniques proposed by 

Pace and Barry (1997a,b,c) to quickly compute the Jacobian of the spatial transformation ( �	 � �− α ). 

This involves the computation of ln| |I D��  across a grid of values of � . With sparse D, special 

techniques exist which make this computational tractable. 

To address the functional form Jacobian part of the likelihood, we employ two additional 

techniques to greatly accelerate computational speed. First, we use an intermediate transformation of 

the dependent variable. Intermediate transformations are often used in nonparametric regression 

(regression with very flexible functional forms). By adopting a transformation which partially 

models the nonlinearity, it requires less flexibility (fewer degrees-of-freedom) to model the 

remaining nonlinearity. The goal of our particular intermediate transformation is to make the 

dependent variable’s histogram approximately symmetric.   

Second, given an approximately symmetric dependent variable, we can employ evenly spaced 

knots. Equally spaced knots result in more observations between the central knots and fewer 

observations between the extreme knots. This makes the spline transformation more flexible in the 

tails and less flexible in the center, a desirable result. Such evenly spaced knots have often been used 

with B-splines (Hastie and Tibshirani (1990, p. 24)). Evenly spaced knots lead to a very simple 

functional form Jacobian (Eilers and Marx (1996), Shikin and Plis (1995, p. 44)) suitable for rapid 

computation.  

To address the log of sum-of-squared errors portion of the log-likelihood, we use the linearity of 

the B-spline and spatial transformations to write the overall sum-of-squared errors as a series of the 

sum-of-squared errors from regressions on the individual parts of the transformation. This allows us 

to recombine the sum-of-squared errors from a set of regressions rather than recompute the sum-of-

squared errors fresh each iteration. 

Cumulatively, these computational techniques accelerate the log-likelihood computations so that 

each iteration takes little time. Each estimate requires around 1,000 iterations. Yet, these could be 
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computed in less than 10 seconds on a 200 megahertz Pentium Pro computer, even though the data 

set had 11,006 observations. 

We apply this to a housing data set from Baton Rouge, Louisiana. The Real Estate Research 

Institute at Louisiana State University estimates regressions periodically to form an index of real 

estate prices over time. Since each house does not sell each quarter, the regression controls for the 

differences in sample composition over time by using a variety of independent variables such as age, 

living area, other area, number of bathrooms, number of bedrooms, and date of sale. In addition, 

variants of these data have been used to examine prediction accuracy of regression models (e.g., 

Knight, Sirmans and Turnbull (1994)).  

In real estate, predictions of the price of unsold homes have been extensively used for tax 

assessments. In fact, the majority of the districts in the country (and many foreign countries) use 

some form of statistical analysis to predict the prices of unsold homes (Eckert (1990)). In addition, 

the secondary mortgage markets have begun exploring the use of statistical appraisal for determining 

the value of collateral for loans (Gelfand et al. (1998), Eckert and O’Connor (1992)). Note, both of 

these applications give rise to very large spatial data sets. 

To handle these needs, we estimated a general model which includes the previously discussed 

transformations of the dependent variable, transformations of the independent variables, spatially 

lagged independent variables, time indicator, and miscellaneous variables. As an illustration of the 

efficacy of the proposed techniques, the general model reduced the interquartile range of the 

residuals by 38.38% relative to a simple model using the untransformed dependent variable. 

Moreover, the resulting dependent variable transformation greatly improved the pattern of the 

residuals. 

Most estimates of the Box-Cox parameters yield a model somewhere between a linear and 

logarithmic transformation. The estimated dependent variable transformation also fell between a 

linear and a logarithmic transformation – it was close to a linear transformation for low-priced 

properties but approached a logarithmic transformation for the high-priced properties. In fact, it 

actually provided more damping than the logarithmic transformation for extremely high-priced 

properties. Finally, the estimated functional forms of the independent variables seemed plausible and 

of interest. 

Section II develops the joint spatial and dependent variable transformation estimator while 

section III applies the estimator to the Baton Rouge data. Section IV concludes the paper. 
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II. Simultaneous Spatial and Variable Transformations 

This overall section presents the estimator and the various techniques facilitating computation. 

Section A sets up the log-likelihood, section B discusses the application of splines to the problem, 

section C shows how to simplify the SSE, section D provides a computational simplification of the 

spatial Jacobian, section E gives a simple way of computing the functional form Jacobian, and 

section F extends the model to transformations of the independent variables. 

A. A Transformed Dependent Variable with Spatial Autoregression 

Suppose the transformed variable follows a spatial autoregressive process, 

 
Y X u

u Du

( )� �
� �
� �

� �
 (1) 

where � � �θ  denotes the transformed dependent variable n element vector which depends upon the o 

element vector of parameters θ. In addition, X denotes an n by p matrix of the independent variables, 

D denotes an n by n spatial weight matrix, α  represents the autoregressive parameter (� �> ≥α ), β 

denotes the p element vector of regression parameters, u denotes the spatially autocorrelated error 

term, while ε denotes a normal iid error term.  

The spatial weight matrix D has some special structure. First, it has zeros on the main diagonal 

which prevents an observation from predicting itself. Second, it is a non-negative matrix and 

positive entries in the jth column of the ith row means observation j directly affects observation i. 

We do not assume symmetry and so the converse does not necessarily hold. Third, we assume each 

observation is only directly affected by its m closest neighbors. This makes D very sparse (high 

proportion of zeros) which greatly aids computational performance. Fourth, D is row-stochastic and 

so each row sums to 1. This gives D a smoothing or linear filter interpretation (Davidson and 

MacKinnon (1993)). Intuitively, �� � �θ  provides a construct similar to a lag in time series for � � �θ .  

To estimate (1), we rewrite it as, 

 � � � �� � � �− = +α θ β ε  (2) 

For a known α  and θ, one could proceed to apply OLS to (2). Unfortunately, estimating α  and θ 

via OLS results in biased estimates.  

To motivate the defect in using OLS to estimate the parameters in this situation, consider 

momentarily the very simple model ( )� � �I Y X� �  where �  represents a scalar parameter. If we 
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employ OLS to estimate both �  and � , the estimated value of the parameter �  would equal 0 for any 

value of � . This would turn the dependent variable vector �Y  into a vector of zeros that a model 

with an intercept would fit perfectly.  

To prevent this form of extreme behavior, one must employ maximum likelihood which 

explicitly penalizes such pathological transformations using the Jacobian of the transformation. The 

Jacobian of the transformation measures the n-dimensional volume change caused by stretching or 

compressing any or all of the potential n dimensions. By premultiplying Y via the matrix �I , we are 

performing a linear transformation. In this case we are compressing or stretching each of the n 

dimensions of Y by a factor � . Relative to a unit value for � , values of � � 1 correspond to more 

singular transformations. The Jacobian of the transformation is the determinant of the matrix of 

derivatives which in this instance is � n  ( � �I n� ).1 To make the example even simpler, we are 

dealing with a cube when n is 3. If we multiply each dimension of the cube by a factor of 2, we 

increase the volume of the cube by a factor of 8 (23). The need for the Jacobian is not specific to the 

normal maximum likelihood, but arises whenever making transformations with proper, continuous 

densities (Davidson and MacKinnon (1993, p. 489), Freund and Walpole (1980, p. 230-252)). 

Assuming normality, the profile log-likelihood for this example equals a constant plus the log of 

the Jacobian less ( ) log( ( ))n SSE2 � . Taking as a reference point the sum-of-squared error when � � 1 

(SSE( )� � 1 ), then SSE SSE( ) ( )� � �� � 1 2 . As an example, multiplying Y by a constant of 1
2 would 

multiply SSE by a constant of 1
4. Hence, the profile log-likelihood becomes 

n n SSElog( ) log( ( ) )� � �� �1
2

21� � . A simple expansion shows that the likelihood will be the same for 

any choice of � . Hence, the maximum likelihood choice for �  does not depend upon � . Thus, one 

cannot affect the maximum likelihood estimate by a simple scaling of the dependent variable, a 

highly desirable result.2 

In this simple case, the role of the Jacobian in maximum likelihood is clear. The Jacobian 

continues to play a similar role in more complicated transformations such as those arising from 

spatial transformations or from functional form transformations. Successive transformations result in 

Jacobians multiplied by each other in the multivariate density. Hence, for simultaneous 

                                                
���������	�	���������������������	���	��������������������������������������	���� �������!�������"������	�� �
�����	��#�$���%� ���&&
'�(#��&&)�����������	�������������	���������(��	�#�
���������	��	��*��+�		�	���&&���(��������	��,�����	���	���������	�������	���������	���	�������	��,�����
��,�������-�������#�
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transformations the log of the Jacobian of ABC  would equal the sum of the logs of the individual 

Jacobians (e.g., ln( ) ln( ) ln( ) ln( )J J J JABC A B C� � �  where J denotes the relevant Jacobian). 

Hence, the profile log-likelihood for estimation using a spatial and a functional form 

transformation equals, 

 L C J Y J Y SSElik
n( , ) ln( ( ) ) ln( ( ) ) ln( ( , ))� � � �

a q
� � � � 2� �  (3) 

where � �� �α  and � �� �θ  represent the Jacobians of the spatial and dependent variable 

transformations and Clik  represents an arbitrary constant.  

Attacking the maximization of the above log-likelihood in the most straightforward way would 

likely result in very long execution times. We show methods for greatly accelerating the 

computation of each of these terms. We detail these computational accelerations in the sections 

below. 

B. Linear Expansions of Non-Linear Functions  

If one computed � � �θ  and subsequently � � � �� � �− α θ  for every iteration of the maximization of 

the log-likelihood, this could greatly reduce the speed of the algorithm as � �� �− α  is an n by n 

(albeit sparse) matrix. Hence, we first seek ways of avoiding this step. Fortunately, if we can expand 

� � �θ  linearly, we can avoid this set of computations. A number of ways of linearly expanding a 

function exist. We could use indicator variables, polynomials, or splines. For our computations we 

chose B-splines (De Boor (1978, 1999)).  

In fact, splines generalize both indicator variables and polynomials. Indicator variables provide 

a locally constant fit to a function for their non-zero portions. B-splines of degree 0 yield indicator 

variables. The advantage of indicator variables or B-splines of degree 0 is their local fit. Their 

disadvantage is that locally constant approximations are not necessarily continuous or smooth. 

Polynomials, however, exhibit both continuity and smoothness. Polynomials attempt to 

approximate a function globally and gyrations of the function over parts of the domain can cause the 

polynomial to poorly fit other parts of the domain. A polynomial equates to a high degree B-spline 

with few knots.  

Specifically, B-splines are piecewise polynomials with conditions enforced among the pieces. 

The knots specify where each local polynomial begins and ends and the degree specifies the amount 
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of smoothness among the pieces. A spline of degree 0 has no smoothness, a spline of degree 1 is 

piecewise linear, a spline of degree 2 is piecewise quadratic, and so forth.  

To provide some physical intuition, a spline was a thin strip of wood used in constructing ships. 

The spline attached to two points separated by less than its length would cause the spline to produce 

a curve. By introducing supports (ribs of the ship), the curve could be modified into many shapes. 

Hence, the spline knots act similar to the ship’s ribs. Moreover, the flexibility of the strip of wood 

would determine the smoothness (affect the degree of the spline). The piecewise linear splines used 

here correspond to laying a string across the ribs of the ship.  

Also, one can restrict B-splines to yield strictly monotonic transformations. One must have 

monotonic transformations of dependent variables for prediction in the original dependent variable 

space (Ramsay (1988)). Finally, B-splines can interpolate a given set of values (assuming satisfaction 

of the Schoenburg-Whitney conditions (De Boors (1999, p. 1.10)). The Schoenburg-Whitney 

conditions essentially require that each of the B-spline basis vectors have at least one non-zero value. 

Hence, given a set of values, some weighting of the associated B-spline basis vectors could return 

the same set of values. 

To explain splines in detail is beyond the scope of this article. However, a specific example 

greatly aids in understanding some of their features. In example 1 we consider four values for the 

dependent variable Y of 1, 1.5, 2.25, and 3.0. Given knots of 1, 2, and 3 (with 1 and 3 being 

repeated), we used the SPCOL function in the Matlab Spline Toolbox 2.01 to produce the following 

matrix B(Y) comprised of three basis vectors. The exact values of the basis vectors depend upon Y 

and hence we emphasize this by writing B(Y).  

 

Example 1 

Y B(Y) 

1.00 1.00 0.00 0.00 

1.50 0.50 0.50 0.00 

2.25 0.00 0.75 0.25 

3.00 0.00 0.00 1.00 
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In example 1, B(Y) illustrates a couple of B-spline features. First, B(Y), the collection of basis 

vectors, contains only non-negative numbers. Second, each row sums to one. Third, the basis vectors 

have zero elements for elements of Y sufficiently far away from the knots. If we compute B Y( )�  for 

� interpolate � [ ]1 2 3 , we find it yields Y exactly. For other �  such that � � �1 2 3� � , the plots of B Y( )�  

versus Y show a monotonically increasing piecewise linear relations. Figures 1a, 1b, 1c, and 1d show 

four such plots. In every case, the selected �  satisfied the monotonicity constraints. Figure 1a shows 

how the function B Y( )�  exactly replicated the original Y (interpolated). Figure 1b shows a slightly 

concave transformation while 1c shows a more severe concave transformation. Figure 1d shows a 

convex transformation. With more points, one could generate combinations of convex and concave 

transformations (over different domains). 

Assuming satisfaction of the Schoenburg-Whitney conditions, with B-splines our transformed 

dependent variable becomes, 

 � � �� � � �θ θ=  (4) 

where � �� �  represents the n by o matrix containing the basis vectors and θ  represents the o by 1 

parameter vector. The number of basis vectors, o, depends upon the number of knots and the degree 

of smoothness required. As o rises, the transformed dependent variable � � �θ  can assume 

progressively more flexible forms.  

Substituting (4) into (2) yields (5). 

 � � � � � � � � / � � � �0� � � � � � � � � �� �− = − =
−

�
��

�
��α θ α θ

θ
αθ

 (5) 

Hence, one can linearly expand the joint spatial and dependent variable into the product of a n by 2o 

matrix and a 2o by 1 parameter vector. 

C. SSE Simplifications 

Let M represent the idempotent least squares matrix � � � � �− ′ ′−� � � . We can write the residuals 

from the regression of � � � �� � �− α θ  on X as (6), 

 � 	 � � �� � 	� � 	�� � 
=
−

�
��

�
��

	

�

�

� =

−
�
��

�
�� =� � � � � � � �

θ
αθ

θ
αθ

ρ  (6) 
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where the n by 2o matrix E contains all the residuals from the individual regressions and the vector ρ 

represents the 2o element parameter vector. The linearity of the problem means the least squares 

residuals e on the overall transformed variable � � � �� � �− α θ  are simply a linear combination of the 

least squares residuals from regressing each basis vector in� �� �  and their spatial lags �� �� �  on X. 

Hence, forming parameterized sum-of-squared errors yields (7). 

 ��
 � � 
 
� ' �α θ ρ ρ= ′ = ′ ′� �  (7) 

Note, the 2o by 2o error cross-product matrix ′
 
  is only computed once. Subsequent iterations of 

′ ′ρ ρ
 
� �  involve only order of o3 operations, a very small number which does not depend upon n, 

the number of observations or k, the number of regressors. Moreover, o is usually much less than k 

and strictly less than n. This reduction in the dimensionality of the sum-of-squared errors leads to an 

low dimensional profile likelihood (Meeker and Escobar (1995)). 

D. Spatial Jacobian Simplifications  

Historically, the spatial Jacobian, �	 � �− α , constituted the main barrier to fast computation of 

spatial estimators (e.g., Li (1995)). However, the use of a limited number of spatial neighbors lead to 

sparse matrices. Pace and Barry (1997b, c) show how various permutations of the rows and columns 

of such sparse matrices � �� �− α  can vastly accelerate the computation of �	 � �− α . Although 

computation of ln I D��  is inexpensive for a particular value of � , one can further accelerate the 

computations by computing ln I D��  for a large numbers of values of �  (e.g., 100) and 

interpolating intermediate values. Insofar as �  has a limited range (for stochastic D) and the 

function ln I D��  is quite smooth, the interpolation exhibits very low error.  

Moreover, these computations are performed only when changing the weight matrix D. Hence, 

one can reuse the grid of values (and interpolated points) when fitting different models involving Y 

and X for a given D.  

Pace and Barry have released a public domain Matlab-based package, “Spatial Toolbox 1.0” 

available at www.finance.lsu.edu/re which implements these spatial Jacobian simplifications and 

contains copies of the articles which describe the implementation details. 
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E. Functional Form Jacobian Simplifications 

The functional form log-Jacobian has a particularly simple form for piecewise linear splines 

with evenly spaced knots,  

 2 2 1 3 3 2 1 ( 1) ( 2)ln( ( ) ) ln( ) ln( ) ln( )o o oJ Y C n n nθ θ θ θ θ θ θ− − −= + − + − + + −�  (8) 

where � � �
R� � �' ' � �� −  represents the number of non-zero elements of all but the first and last basis 

vectors and the distance between knots determines the constant C (Eilers and Marx (1996), Shikin and 

Plis (1995, p. 44)). This very simple form lends itself to extremely rapid execution. Piecewise linear 

splines also facilitate enforcing strict monotonicity. Provided � �θ θM M+ − >
�

� , � �� �θ > � .  

Unfortunately, an even placement of knots may not work well in many cases. However, 

transforming the original variable Y may result in a variable g(Y) where an even knot placement will 

work better. In which case, the log of the Jacobian involving an intermediate transformation can be 

partitioned into the original log-Jacobian and a log-Jacobian for the intermediate transformation. 

 �	� � � �� � �	
� �

�	� � � �� � �

� �

�

� �
LL

Q

θ θ=
	

�

�

� +

=
∑
�

 (9) 

The intermediate transformation �� �⋅  does not depend upon the parameters α or θ and hence 

these do not affect its contribution to the functional form Jacobian. However, the intermediate 

transformation �� �⋅  does help adjust the placement of knots and therefore has some effect upon the 

final fit. Parameterizing knot placement within a maximum likelihood framework could make it 

easier to assess its statistical consequences.  

Even knot placement results in nested models in some cases. For example, if the most flexible 

model uses 12 knots, sub-models with six, four, three, and two knots correspond to parameter 

restrictions placed on the 12 knot model. Again, this aids the assessment of the statistical 

consequences of knot placement.  

F. Extension to Functions of the Independent Variables 

Naturally, one could include a spline expansion of the independent variables. In addition, one 

could include spatial lags of the independent variables. Let Z represent the untransformed 

independent variables. We could model X, the regressors as, 

 � � � �� �= � � � �  (10) 
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where B(Z) represents the spline expansion of each one of the columns of Z. Note, without deletion 

of one basis vector for each column of Z, X would be linearly dependent as the sum of the rows of all 

the basis vectors always equals 1 for B-splines. Hence, if each basis function expansion takes o 

vectors, B(Z) will have dimension of p(o-1). Adding the spatial lags doubles the variable count. The 

spline expansion of each one of the core independent variables Z allows one to create a generalized 

additive model (Hastie and Tibshirani (1990)). In addition, this particular model allows the spatially 

lagged variables to follow a different functional form.  

 � � � � � � � � � � � �� � � � � �� � � � �� �L

L

S

L

L

S

− = + = + +
= =
∑ ∑α θ β ε ε
� �

 (11) 

This very general specification subsumes the case of autocorrelated errors. This restriction would 

also make � �� � � �⋅ = ⋅ . Imposing this restriction would substantially slow the speed of computing the 

estimates. However, the use of restricted least squares would still provide much more speed than a 

formulation which required computing � �′� �  each iteration. Moreover, this restriction will often be 

rejected by the data as n becomes large.  

III. Baton Rouge Housing 

This overall section presents the application of the techniques developed in the previous section 

to housing data from Baton Rouge. Section A discusses the data, section B gives details on the 

construction of the spatial weight matrix, section C provides timing and other information on the 

determinant computations, section D presents the general model, section E discusses the estimated 

dependent variable transformation, section F discusses the estimated independent variable 

transformations, section G shows how to conduct the inference in this model, section H discusses 

model performance in the untransformed variable space, and section I conducts an experiment to 

document the uniqueness of the estimates and computation times. 

A. Data 

We selected observations from the Baton Rouge Multiple Listing Service which (1) could be 

geocoded (given a location in latitude and longitude based upon the house’s address); (2) had 

complete information on living area, total area, number of bedrooms, and number of full and half 

baths. In addition, we also discarded negative entries for these characteristics. In total, 11,006 

observations survived these joint criteria.  
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B. Spatial Weight Matrix 

To construct the spatial weight matrix D, compare the distance dij between every pair of 

observations i and j to 

L

P , the distance from observation i and its mth nearest neighbor. It seems 

reasonable to set to 0 the direct influence of distant observations upon a particular observation. 

Accordingly, assign a weight of �

P
 to observations whenever dij is greater than 0 and is less than or 

equal to 
P  as in (12), 

 � �< ≤ ↔ =
 
 �LM L
P

LM P� � . (12) 

By construction D will be row-stochastic but not necessarily symmetric. For this particular problem, 

we set m equal to 4. 

C. Determinant Computations 

Following Pace and Barry (1997b) we computed �	 � �− α  for α = � ��� �� � &&# ' # ' ' #� . The LU 

decomposition of � �� �− α  results in the triangular matrices L and U, where the diagonal of U 

contains the pivots �
L
. By construction, � �� �− α  is strictly diagonally dominant and hence has 

bounded error sensitivity (Golub and Van Loan (1989)). The magnitude of the determinant is 

determined by the product of the pivots �
L
 or the log-determinant by the sum of ln( �

L
).  

Computation of the 100 determinants took 57.6 seconds on an 200 megahertz Pentium Pro 

computer. By employing some of the permutation algorithms discussed in Pace and Barry (1997b) or 

by employing some devices to exploit symmetry as in Pace and Barry (1997c) we could further 

accelerate these times. 

Given the grid of log-determinant values, we employed linear interpolation to arrive at 

intermediate values. 

D. Model 

We fitted the following model to the data. Each of the functions � �� �' � �⋅ ⋅  for the independent 

variable’s living area, other area, and age comes from piecewise linear B-splines with knots at the 

minimum value, the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 99th quantiles, and the maximum value. 

Specifically, we used the Matlab Spline Toolbox (Version 1.1.3) function SPCOL to create the 

necessary basis vectors. Hence, applying SPCOL to a particular variable such as age would result in 

an n by 11 matrix whose columns contained the basis vectors. A particular linear combination of 
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these basis vectors would create the function � � �⋅  while a different linear combination of the same 

basis vectors would create �� �⋅ . De Boor wrote the Spline Toolbox and the functions in it closely 

resemble those described in De Boor (1978). 

For the discrete full bath and beds variables, these functions are formed from indicator variables 

at each of the values these discrete variables assume. In addition, we used single indicator variables 

to control for age missing values, for age greater than 150 years, for the presence of half-baths, and 

for the year of sale. For both the spline and the sets of indicator variables, we deleted one column to 

prevent linear dependence as the row-sum of B-splines equals 1 as does the sum of a complete set of 

indicator variables.  

 

( ) ( ) ( ) ( ) ( )

( ) ( )
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� � �
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� � � � �
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� � � �

Price living area other area age

full baths beds

living area other area age

full baths beds age missing

age half bath > 0

1 2 3

4 5

1 2 3

4 5 1 1

2 2 3 3 1985 1992 4 11150

 (13) 

The full model involves 113 parameters. This very general model will hopefully span the true 

model. Moreover, the general model provides a way of investigating other potential problems and a 

starting point for subset selection. See Hendry, Pagan, and Sargan (1984) for more on the advantages 

of general to specific modeling. 

E. Estimated Dependent Variable Transformations 

As discussed in II.E, the use of an intermediate transformation �� �⋅  makes it possible to modify 

the effects of equal knot placements. We selected the Box-Cox transformation � � �� � � � 1= −ϕ ϕ�  

with log-Jacobian � � �	� ��− ∑ϕ �
L

) for this step. We examined the transformation for a grid of ϕ and 

selected ϕ=0.25 based upon maximizing the normality of Y as measured by the studentized range. 

This induced approximate symmetry which made equal knot placement viable. We used 11 equally 

placed knots.  

Based upon other work with transformations (e.g., Burbidge (1988)) we expected most 

reasonable transformations would induce linearity for the bulk of the observations. The approximate 

normality of Y coupled with equal placement gave the desirable result of having a greater number of 

knots in the tails as opposed to the center of the density of Y. This gave the potential transformation 

more flexibility in the tails where the differences among transformations emerge. 
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Figure 2 shows Y, ln(Y), and � � �θ , the optimal piecewise linear spline transformation of Y, 

plotted against ln(Y). The optimal transformation � � �θ  acts similar to a linear transformation for 

low-priced houses and acts more like the logarithmic transformation for high-priced houses.  

Figure 3 shows the effects of this optimal transformation. Figure 3c shows the extreme 

heteroskedasticity (positively related to price) created by not using any transformation. Note the 

untransformed dependent variable model systematically underpredicts the high-priced properties as 

well.  

Figure 3d shows the extreme heteroskedasticity (negatively related to price) created by using the 

logarithmic transformation. Note the logarithmically transformed dependent variable model 

overpredicts low-priced properties as well.  

Figure 3b shows the intermediate transformation (Box-Cox with λ = � �
# ) created 

heteroskedasticity for both low and high-priced properties and also created problems of systematic 

over and under prediction at the extremes of the price density. 

Figure 3a shows how the spline transformation cures the problem of heteroskedasticity. 

Moreover, inspection of the low and high-priced properties does not reveal a systematic pattern of 

under or over prediction. Figure 4a shows the histogram of standardized residuals from the spatial 

regression on the transformed dependent variable with a normal curve superimposed. Similarly, 

Figure 4b shows the histogram of standardized residuals from the spatial regression on the 

untransformed dependent variable with a normal curve superimposed. Relative to the untransformed 

dependent variable spatial regression, the errors from the spatial regression on the transformed 

variable show substantially less leptokurtosis. 

Previous work, such as Knight, Sirmans and Turnbull (1994), avoided the problem of 

heteroskedasticity by truncating large portions of the sample based upon price.  

F. Estimated Independent Variable Transformations 

Figure 5 shows the optimal functions of the independent variables. Note, we did not enforce 

strict monotonicity with these optimal functions. Figure 5a depicts �
�
� �����	������ , which apart 

from a decreasing section for very small houses not often observed in the sample, shows a positive, 

concave relation between � � �θ  and living area. Miscoding of observations, such as leaving out a 

digit in the living area field, provides one possible explanation for this decreasing section. For 
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example, if there are average-priced houses with 0 reported living area, the model might actually 

show a rise in price as living area goes to 0.  

As depicted by Figure 5b, age shows a decreasing relation up until about 40 years when it rises 

and declines again at 100 years. The Age variable confounds two phenomena. First, physical and 

hence economic depreciation rises with age. Second, age reflects the year of construction. If the year 

of construction proxies for features such as wood floors, high ceilings, or other desirable traits, one 

could see a non-monotonic relation between age and price. In addition, remodeling confuses the 

issue as the age of the improvements differs from the age of the original structure. Goodman and 

Thibodeau (1995) also found a non-monotonic relation between age and price. “Dwellings 20-40 

years old appreciated slightly, while older dwellings depreciate.”  

As depicted by Figure 5c, other area shows a very positive, concave relation between � � �θ  and 

other area. As depicted by Figure 5d, baths shows a positive, concave relation between � � �θ  and 

baths up until four baths. Subsequently, it declines slightly. Again not many houses have five baths 

or more.  

One would not necessarily expect a monotonic relation between bedrooms and price. Holding 

other variables constant, more bedrooms means smaller bedrooms. Hence, bedrooms is a design 

value with some optimal value. As depicted by Figure 5e, this optimum is at three bedrooms, a 

plausible value. Finally, Figure 5f shows the relation between � � �θ  and year-of-sale. This shows the 

precipitous drop in housing prices in 1988 which has been documented by others (e.g., Knight, 

Sirmans and Turnbull (1994)). 

We also examined the optimal independent variable transformations for the original 

untransformed dependent variable (no spatial or dependent variable transformations). For the most 

part, these arrived at qualitatively similar independent variable transformations. Some differences 

appeared. For example, the optimal transformation for living area was slightly convex instead of 

concave, baths showed a more precipitous drop for houses with more than five bathrooms, and age 

showed a rise after 20 years (as opposed to around 35 years for the model with spatial and dependent 

variable transformations). 
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G. Inference 

Given the fast computation of the log-likelihood, it seems reasonable to conduct inference via 

likelihood ratio tests. Table 1 presents these likelihood ratios for a wide variety of hypotheses. In all 

cases these were significant at well beyond the 1% level. Hence, both the spatial and the 

transformation parts of the model seem highly significant. The spatial autoregressive parameter, α, 

equaled 0.5820 and had a deviance (-2log(LR)) of 3936.62 with only one hypothesis. The 

transformation � � �θ  also proved quite significant with a deviance of 8114.82 with 10 hypotheses. 

Only 10 parameters vary independently due to the affine invariance of the regressand for linear 

regression. Note, deleting the transformation parameters equates to running a pure spatial model. For 

the pure spatial model α equaled 0.5099. Hence, rather than the transformation removing spatial 

autocorrelation through better specification, the model acted to transform the dependent variable to 

increase the use of the autocorrelation correction. 

The individual variables were all significant with living area showing the greatest impact on the 

log-likelihood with a deviance of 3364.92. The general model dominated simpler models with fewer 

variables. Compared to running a regression with the untransformed dependent variable coupled 

with a simple set of independent variables ignoring space and transformations, the deviance was 

14782.04 with 82 hypotheses. 

The use of restricted least squares, which avoids recomputing � �′� � , further aids in the speed of 

computing these likelihood ratio tests. 

Finally, we do not account for the statistical consequences created by the monotonicity 

constraint. However, one could easily use a Bayesian inequality estimator as in Geweke (1986) to 

show how the prior associated with the monotonicity constraint affects the posterior distributions of 

the parameters of interest. See Gilley and Pace (1995) for an application of this estimator to another 

house price data set. 

H. Performance in the Original Dependent Variable Space 

Part of the goal of fitting the general model was to improve upon prediction over simpler 

models in the original dependent variable space (Price). Given the Y and the strictly positive 

monotonic transformation � � �θ , we can take the prediction in the transformed space, �� �� θ  and with 

interpolation compute the prediction in the original space, �� . Even if �� �� θ  comes from an unbiased 
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estimator of � � �θ , ��  does not unbiasedly estimate Y. To control for this bias, we allowed for it 

using the smearing estimator of Duan (1983).  

We computed the predictions for a variety of models in the original dependent variable space. 

The performances of these models in the original dependent variable space appear in Table 2. We 

began with Model 5, a simple model in price space without transformation or spatial modeling of the 

independent or dependent variables. One could consider Model 5 as the standard model without 

using any transformations. The results from Model 5 closely match others in the literature. For 

example, Knight, Sirmans and Turnbull (1994) examined the relation between list and transactions 

prices for the Baton Rouge data to investigate buyer search behavior. Their model uses a very 

similar specification and has a R2 of 0.72. The R2 for Model 5 was a very similar 0.7299. This 

provides a benchmark for the subsequent models.  

The residuals are asymmetric in Model 5 so while the mean error equals 0 by construction, the 

median error equals –530.14 dollars and the 25th and 75th quartiles are –10,660.61 and 9,707.98 

dollars. Given the average price of the houses in the sample is $75,597, this does not represent 

particularly good performance. Model 4, which includes spatial independent variables and 

transformed independent variables, improves considerably on Model 5. It shows more symmetric 

errors and dominates Model 5 for every order statistic. Similarly, Model 3 adds transformation of Y, 

and also improves on Model 4 for most order statistics. Model 2 does not use transformations of Y 

but does add spatially lagged Y. It shows a large reduction relative to previous models for all but the 

minimum and 1st quantiles of the empirical error density.  

Model 1, the general model, displays considerable improvements over the previous models, 

except for the 95th quantile to the maximum of the empirical error density where the spatial model 

without dependent variable transformations (Model 2) displays lower error. Relative to the simple 

Model 5, Model 1 has a 38.38% lower interquartile range of the empirical error density. In addition, 

relative to Model 4, the next best performing model, it shows a 8.6% reduction in the interquartile 

range of the empirical error density. Hence, the improvements in the transformed space carry back to 

the untransformed space. 

I. Timing and Uniqueness 

Local maxima are the bane of complicated maximum likelihood models. To examine this 

problem in the context of this problem, we estimated the model 250 times with different random 
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starting points. We picked α randomly from [0,1). We picked θ
L
 from [0,1] with the restriction that 

θ θ
L L− >
�

 to generate strictly positive monotonic starting points. 

It took 493 iterations at minimum and 1642 iterations at maximum to find the optimum. On 

average it took less than 10 seconds to arrive at the maximum likelihood estimates (given previous 

computation of ′
 
  and �	 � �− α ) using a computer with a 200Mhz Pentium Pro processor. All of 

the 250 estimates converged to the same log-likelihood value with a maximum error of 0.08 from 

the iteration which took the longest to converge.  

IV. Conclusion 

Locational data may suffer from both spatial dependence and a host of other problems such as 

heteroskedasticity, visible evidence of misspecification for extreme values of the dependent variable, 

and non-normality. Functional form transformations of the dependent variable often jointly mitigate 

these problems. Moreover, the transformation to reduce spatial dependence and the transformation 

of the functional form of the dependent variable can interact. For example, a reduction in the degree 

of functional form misspecification can also reduce the degree of spatial autocorrelation in the 

residuals. Alternatively, the functional form transformation may make the spatial transformation 

more effective. In fact, the latter occurred for the Baton Rouge data as the spatial autoregressive 

parameter rose from 0.5099 when using the untransformed variable to 0.5820 when using the 

transformed variable. 

Application of the joint spatial and functional form transformations to the Baton Rouge data 

provided a number of gains relative to simpler models. First, the pattern of residuals in the 

transformed space improved dramatically. For example, unlike the residuals from simpler models, 

the general model’s residuals seemed evenly divided by sign for all predicted values. Second, the 

magnitude of the sample residuals dropped dramatically even in the untransformed variable’s space. 

Specifically, the interquartile range of the residuals from the general model using all the 

transformations when taken back into the untransformed variable’s space fell by 38.38% relative to 

the residuals on a simple model with the untransformed variable. Third, the general model provided 

interesting insights into the functional form of the dependent and independent variables. The 

estimated functional form for the dependent variable followed an approximately linear 

transformation for low-priced properties, an approximately logarithmic transformation for high-
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priced properties, and a somewhat more severe than logarithmic transformation for the very highest-

priced properties.  

The computation of the model employs several innovations. First, it relies upon the sparse 

matrix techniques proposed by Pace and Barry (1997a,b, c) to compute 100 log-determinants of the 

11,006 by 11,006 spatial transformation matrix in 57.6 seconds using a 200 megahertz Pentium Pro 

computer. Interpolation of this grid of log-determinants provides the spatial log-Jacobian which 

greatly accelerates maximum likelihood maximization. Second, it uses an intermediate 

transformation to allow the use of evenly-spaced knots which have a particularly simple log-

Jacobian for the functional form. Third, it expresses the overall sum-of-squared error as a linear 

combination of the sum-of-squared errors on individual parts of the transformations. Consequently, 

the actual maximization of the log-likelihood for the joint transformation takes less than 10 seconds 

on average (given prior computation of the spatial log-Jacobian and the individual sum-of-squared 

error computations). This part of the maximization of the log-likelihood does not directly depend 

upon the number of observations or the total number of regressors. The optimum appears unique as 

250 iterations with different starting points returned the same log-likelihood value. 

The computational speed of this model has at least two implications. First, inference can 

proceed by relatively straightforward likelihood ratio tests. The use of restricted least squares, which 

avoids recomputing � �′� � , further aids in the speed of computing the likelihood ratios. Second, the 

model becomes useful for exploratory work with large spatial data sets, an area which currently 

suffers from a lack of tools. By simultaneously fitting a generalized additive model and controlling 

for spatial dependence, it potentially provides a good first view of locational data. Such views can 

suggest simpler parametric specifications and the need for other adjustments such as reweighting. 

Naturally, the model could accommodate reweighting with an additional Jacobian for the weights. 

While we primarily worked with economic data with this model, we suspect it could have 

applications to other fields. As the volume of spatial data continues to rise, methods which 

simultaneously and quickly adapt to the problems which arise in large data sets should come into 

more common use. 
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