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/ABSTRACT

A major impediment to kriging with large data sets is the need to solve
matrix equations with the large matrices that result from using variogram-
based kriging equations. This is expensive both in computing time and mem-
ory. When the range of the variogram is small, use of covariance-based krig-
ing equations and sparse matrix techniques can allow the kriging equations
to be solved very efficiently. By fitting the variogram model and then using
this to derive the covariance matrix, we keep the better estimation properties
of the variogram, and can cxploit the sparseness of the covariance matrix.
We compare the relative cfficiency of variogram-based and covariance-based
kriging, using both rcal and simulated data. We also comment on the use of

sparsity in kriging.
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1. INTRODUCTION AND NOTATION

Researchers often measure a variable of interest at a set of known lo-‘
cations {sy,...,3,} in a region. One method of obtaining an estimated map
of the variable at all locations in the region, along with a measure of the
accuracy of this map in diﬂerént parts of the region, is kriging. One of the
most often used formulations of kriging makes the following assumptions:

¢ The variable of interest is a random function Z(s) where s is any
location in the region.

® E(Z(s)) = p for all s in the region.

e For any two locations s;, s; in the region,

Var(Z(s;) ~ 2(s7)) = 2v(s; — s5).

The function 2y(h) is called the variogram of the process. If such a‘
function exists, the f)rocess is called intrinsically stationary.

If we are interested in predicting a value Z(sg) at some location S0
using a linear combination of the measured values Z(51), ..., Z(sn), along
with a requirement that the predictor be unbiased and that it have minimum

squared prediction crror, then we would use the kriging predictor:

(1-1T"'y)

Z(So) = ('7+1 TT-11

YT,

where v = (y(sg — s1), .-, Y(50 — S?‘))’ z= (z(sl),‘..,Z(Sn))y and

"(s1—s1) Y(s1—s2) ... (51— sn)
Y(s2 —s1) v(sz—s2) ... 7(s2—sn)
r= ss—=s1) 7(ss—s2) ... 7(s3—sa)
s - 51) Y(sa — s2) Y(sn - 55)

The matrix T is both symmetric and conditionally negative definite
(Cressie, 1993, p. 60).

The mean squared prediction error at sg is
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o%(so) =7/T7ly— (1T 'y - 1)>/(1'T~"1).
If the random process is actually second order stationary, then the var-

jogram has a sill:

oy = Jim_y(h)
If the random process does have a sill the kriging equations can be

written using the matrix ¥ of covariances:

Cov(Z(s1),Z(s1)) Cov(Z(s1),Z(s2) ... Cov(Z(s1),Z(sa))\’
Cov(Z(s2),Z(s1)) Cov(Z(s2),Z(s2)) ... Cov(Z(s2),Z(sn))
5 ='| Cov(Z(s3),Z(s1)) Cov(Z(s3),Z(s2)) .- Cov(Z(s3),Z(sn))

COV(Z(S,:,),Z(SI)) Cov(Z(s0), Z(2)) ... Cov(Z(ss),Z(sn))

and the vector ¢ = (Cov(Z(s0), Z(s1)),-..; Cov(Z(s0), Z(8a))), where
Cov(2(s), 2() = 0% = 1(s,0)-

This gives the covariogram-based version of the kriging equations:

Z(s0) = (c + 1m)'= 'z,
a%(s0) = oy - (c+1m)Elc+m,

where ‘ }
(1-1%" 1),
m=-

e e

(Cressie, 1993, p. 123).

One nice feature of both the variogram- and covariogram-based kriging
cquations is that the time consuming computation of I'~'z and T'~'1 (or
£-1z, £-'1 and T~'c) nced only be done once even if a large number of
predictions Zk(sm),A..,Z.'(s“,,) are desired. Unfortunately, the time required
to solve a dense (few nouzero entries) linear n X 1 systein grows at ‘order

73, and the requived memory is of order n2. The usual approach to the
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computational problems of lage dats sets when predicting al sy (Deutsch
anel Journel, 1992, p. 30) is to sxclude shsarvations somewhat distant from
2y. In contrast, sparse matrix technlques, by dramatically lowering time and
storage costs, can employ all of the data,

2. THE VARIOGRAM V5 THE COVARIOGRAM

Strong arguments have been made favoring the use of the varlogram aver
the use of the covarlogram in kriging. The two major arguments nre that
variogram estimation is lest hissed than ecvariogram eatimation {Cressie,
1993, p. 69-73), and that the variogram s defined for some processes that
are not gecond erder statlsnary, such ns the random walk (Cressie, 1093,
p. G8). Since the covariance-based kriging equations are more restoictive
than the variogram based ones, why should cne use the covariances? The
answer comes from obesrving the structure of the matricea T and ©. The
variogram matrix T, in all but pathslogical cnses, is nonsero everywhern
exeepl the diagonal. On the other hand, il the variogram moded lios a sill
(o¥y < co), and a range (smallest ¢ such that 4{h) = o3, for oll h >
L} that is smnall compared with the size of the region, then the covarinnes
matrix T has many zeros, sines locations farther aparl than the range wille
be uncorvelited. This results in & sparse matrix. This sparsity allows us to
Bulve Lhe keging oquakions involving & very lacge oumbor of sleervations
By fist estimating the variogram from the dats, and then computing the
covariance matrix E, we can retain the bow bas of warogram estimnation
nlong with the esmputsationsl sdvantiges of spacsity in E.

3. THE EFFICIEMCY OF SPARSE MATRIX TECHNIQUES
The advantages of the comianes-hased kriging squotions becames ap-
parent when luge data sebs are wsod,  For extremely sparse inatrices such
e K, solving the covarbogram-based kriging eqpation £='y = x can require
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far less time and space then that requicred for solving the variogram-based
kriging cquation '™y = x. While these is scane brade-off betwesn tima and
space expenditure, o rule of thumb is thet storage i3 & lnear function of the
numbser of obeervations, and, depenvding on the method of analysis and the
structure of T, the time required can run from anywhere oo livear in the
umiber of observations Lo e third power of the number of observationa
{Druasct, 1905, p. 3).

Wi conducted an investigation of the relative computational efficiency
of warking with the variogram-baged squations versus using the covariogram.
hasod equations. We generated a scries of pxp regular lattices of locstions on
a square grid representing n = p?® locations with & spacing of 0.2 unit between
grid pointe, We ordered the observations sequentially from left to right in
pach row, continuing from the right-hand side of one row to the left-hand side
of the next row, We assumed a spherical ssmivariogram model (Cressie, 1993,
oo 61 (k) = 1003/ R/ RY — (LA RP for b £ 7 and 7(k) = 10 for
h = I, whers the rangs ] of the process was either set to 0.3, 0.6, or 0.9 unit.
Fog onch numbar of ohaerwmbions and esch rangs we shtained (or attempted
Lo oblain) the sparde matriz E and the full n % n matrix . Bolh the aparse
and dense linear gystems wore solved in MATLAB (Matlahb, 1993) using the
wtanelrd solver (f). When the inpat is in sparss matrix form, this generic
oporater putomatically uses algoritlos that take advantage of sparsity. Since
the matrix ¥ is symmetric and has positive diagonal elements, MATLARB, by
clefalt, first reoeders the observations using the symmetric minimum degroe
algovithm, and then performs a Cholesky decomposition (MATLAD User's
Guide, 1903; Gilbert, Moler and Sdireiber, 1992). All calculations were done
e n 137 MHx Pentivm PC witli G4 megabytes of RAM. In Table I, the time
roquired Lo compite Lhe sparse matrix T and solve the linear system Tx = y
in chisplaged for all theee ranges, and from 100 to 10000 observations.
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'TABLE I

Time, in seconds, to solve dense and sparse matrix equations

n density (%) range dense sparse
100 7.84 0.30 0.06 0.00
400 2.10 0.30 1.76 0.11
625 1.36 0.30 8.13 0.22
900 0.96 0.30 20.26 - 0.28

1225 0.71 0.30 61.35 0.44

2500 0.35 0.30 (343)* 0.99

4900 0.18 0.30 (2168)* 2.86

10000 0.09 0.30 (15311)* 11.15
100 20.16 0.60 0.06 0.00
400 5.72 0.60 1.71 0.32
625 3.75 0.60 6.65 0.66
900 2.68 0.60 20.26 1.27

1225 2.01 0.60 61.30 2.08

2500 1.02 0.60 (343)* 5.28

4900 0.54 0.60 (2168)* 20.76

10000 0.26 0.60  (15311)* 60.64
100 44.20 0.90 0.05 0.11
400 14.00 0.90 1.76 1.20
625 9.36 0.90 6.65 2.52
900 6.69 0.90 20.27 4.61

1225 5.01 0.90 50.64 8.29

2500 2.55 0.90 (343)* 24.99

4900 1.33 0.90 (2168)* 73.65"

‘10000 ‘ 0.66 .0.90 (15311)* 733.26

« : . . .
- Lower bound obtained via extrapolation.

The density is the proportion of non-zero entrics. The locations were
ordered first by column number and second by row number, though MAT-
LAB rcordered the locations using the symmetric miniinum degree algorithm
(George and Liu, 1981, p. 92).

Wlien the range of the spherical variogram is 0.3, the covariance matrix

is very sparse, with density approaching 9/n for large n, since each interior
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location is within 0.3 unit of 9 locations. Regressing log(time) on log(n)
shows a very good fit for a line with slope 1.39 (r? = 0.988), indicating
that the time to solve the equation is increasing on order n!-3°. All of these
sparse computations were performed in RAM, instead of requiring slower
virtual memory, so that more system memory would be required to preserve
the n!-3 order as the number of observations increases. When a range of 0.6
is used, the expected density approaches 25/n for large n. Again, regressing
log(time) on log(n), we get a slope of 1.63 (2 = 0.998). For the largest range
of 0.9, the density of nonzéro elements approaches 69/n for n large. In this
case, the slope is 1.67 (72 = 0.999) for n through 4900. At n = 10000, the
computer used the hard disk for storage during the computation, slowing the
computations down. In all cases, the memory requirements of sparse matrix
techniques grew with the number of nonzero elements, linearly with n.
Table 1 also shows the time required when dense matrix algorithms are
used. A regression of log(time) on log(n) yields a slope of 2.75 (r? = 0.995),
implying an almost cubic increase in time requirements. Obviously the rel-
ative efficicncy of sparse computations over dense computations increases
rapidly with n. For n = 2500, 4900 and 10000, the computer was unable
to perform the computations in RAM, and had to use the hard disk. This
so slowed the computations that we were not able to solve the system of
cquations. The table contains cxtrapolated estimates of the computation
time for large dense systems, if sufficient RAM were available to allow the
computations to occur in system memory. Because of the high storage re-
quirement of dense computations, the resulting memory problems are much
worse than in the case of sparse computations. For cxample, in double pre-
cision a 10,000 observation system would require 100007 * 8 bytes, or 800
megabytes to hold a single copy of the matrix. To make matters worse,
many matrix computations require the storage of more than one copy of the

mabrix.
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4. GEOCHEMICAL DATA
From the previous simulations, it is clear that using a sparse matrix and
a covariance-based approach can lead to computational gains. However, the
advantages of sparse techniques do not depend on the use of a regular lattice.
The Geological Survey of Canada measured nickel concentrations at 916 sitcs
in Vancouver Island as part of the National Geochemical Reconnaissance.
This data set is described in Bailey and Gatrell (1995, p. 150). The sites are

irregularly located, as can be seen below:

Easting(Km)

FIGURE I

Locations at which nickel concentration
was measured on Vancouver Iskand.
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Bailey and Gatrell fit a spherical variogram to the log of the nickel

concentration, obtaining the covariogram model:

0.529(1 — (3/2)(Jh]/2.13) + (1/2)(|k|/2.13)%), if OKm < |k| and
|h| £ 2.13Km;

0.827, if |A] = 0Km;

0, if [h| > 2.13Km.

Clh) =

The resulting covariance matrix is very sparse, with only 2096 nonzero
clements (about 29 kilobytes of storage). The full matrix requires 839056
elements (6712 kilobytes of storage). Solution of the linear equation Lz =1
requires 25.92 seconds using full matrix techniques, but only 0.06 second
using sparse matrix techniques, the sparse techniques being 432 times as fast!
While the dense techniques are still viable for this example, the advantages
of sparsity in memory and speed would become even more dramatic as the

number of observations grows.

5. DISCUSSION

o We do not cstimate the covariogram directly, as variogram estimation
has better estimation properties. To obtain sparse matrices, variogram mod-
cls with a finite range must be used. Models such as the exponcntial model
give non-zero (though often small) correlations for all pairs of points, and
arce thus unsuitable. The same holds true for the rational quadratic, power,
and wave models in two-dimensions (Cressie, 1993, p. 61). The spherical
variogram modcl is an example of a model that has a finite range. Barry
and Ver Hoef (1996) have discovered a very flexible family of valid variogram
models with finite range that can approximate any smooth variogram with
finite range.

o As scen in the sparse matrix computations, smaller ranges lcad to
systems of equations that can be solved in an amount of time that grows at

a slower rate. Thus the advantages of using sparse matrix algorithms should
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be greatest for the residuals remaining after regression or detrending, since
these tend to have less long-range correlation.

o Sparse techniques also work well with irregular data as long as mea-
surements from most pairs of locations are uncorrelated. Unfortunately there
probably will not be a natural ordering as in the regular lattice. It is possible
that a poor choice of ordering could decrease the efficiency. A number of an-
tomatic reordering algorithms exist that can protect against the effects of a
poor choice of order (George and Liu, 1981). In the analysis of regression with
spatially autocorrelated errors (simultaneously specified Gaussian) models,
exploiting sparsity leads to tremendous gains in computational efficiency,
cven though the locations are irregular (Pace and Barry, forthcoming).

¢ For sparse matrices, there are fast iterative methods that are generally
even more conservative in their memory usage (Bruaset, 1995; Saad, 1996).
Further investigation is needed to determine if iterative algorithms can al-
low more cfficient solution of very large, sparse linear systems arising from

geostatistical data.

6. CONCLUSION
The use of short range variograms (when appropriate), covariance-based
kriging cquations and sparsc matrix techniques facilitates to perform kriging
on data sets that are much too large for the conventional approach. For
models with small range variograns, kriging with a sample size of 100000 may
be feasible on a fast PC (in our simulation, for a range of 0.3, extrapolation
yiclds an estimate of slightly more than two hours, and with 900000 nonzero

entries the memory requirements should not be impossible to meet).
|

/ACKNOWLEDGMENT
We would like to thank the Editor, the Associate Editor and two anony-

mous referees for their comments, and the University of Alaska for its gener-

KRIGING WITH LARGE DATA SETS 629

ous research support. In addition, Pace would like to acknowledge support
from the Center for Real Estate and Urban Economic Studies, University of

Connecticut.

BIBLIOGRAPHY
Bailey, Trevor C. and Anthony C. Gatrell (1995). Interactive Spatial Data

Analysis, Longman Scientific and Technical, Harlow England, 1995.
Barry, Ronald Paul, and Ver Hoef, Jay M. (1996). “Blackbox Kriging: Spa-

tial Prediction without Specifying Variogram Models” Journal of Agri-

cultural, Biological and Environmental Statistics. Forthcoming.

Bruaset, Are M. (1995). A Survey of Preconditioned Iterative Methods, John
Wiley and Sons, Inc., New York.

Cressie, Noel A.C. (1993). Statistics for Spatial Data, revised edition, John
Wiley and Sons, Inc., New York.

Deutsch, Clayton V., and Journel, André G. (1992). GSLIB: Geostatistical
Software Library and User’s Guide, Oxford University Press, Inc., New
York.

George, Alan and Liu, Joseph W-H (1981). Computer Solution of Large
Sparse Positive Definite Systems, Prentice-Hall, Inc., Englewood Cliffs,
NJ.

Gilbert, J.R., Moler, C, and Schreiber, R. (1992). “Sparsc Matrices in MAT-
LAB: Design and Implementation” SIAM Journal on Matriz Analysis,
13, p. 333-356.

Matlab User’s Guide for Microsoft Windows (1993). Mathworks, Natick.
MA.

Pace, Kelley, and Barry, Ronald. “Fast Spatial Autorcgressions” Statistic:
and Probability Letters. Forthcoming.

Saad, Youscf (1996). [lterative Methods for Sparse Linear Systems, PWE
Publishing Company, Boston, MA.

Received February, 1996; Revised July 199



