Abstract:

Given local spatial error dependence, one can construct sparse spatial weight matrices. As an
illustration of the power of such sparse structures, we computed a simultaneous autoregression
involving observations on median housing prices by all California census blocks. We calculated
the 20,640 observation autoregression in under 19 minutes despite needing to compute a
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Sparse Spatial Autoregressions

I. Introduction

Regression is perhaps the most often used technique in statistics. When applied to
spatially distributed observations, however, much predictive power can be lost by ignoring
the presence of spatial autocorrelation. Moreover, ignoring spatial autocorrelation leads to
a serious violation of the assumptions underlying ordinary least squares regression which
can result in erroneous statistical inference. Fortunately, a variety of spatial estimators can
adjust for this problem. Examples include simultaneous autoregressions (SAR), conditional
autoregressions (CAR), and kriging (see Cressie (1993)).

Unfortunately, all of these techniques involve examining the explicit relation between
an observation and all other observations. If n observations exist, this leads to n* potential
relations. Hence, as n becomes large, computing spatial estimators can become quite
expensive as these usually require computing the determinant or inverse of an n by n
matrix which requires order of n® operations (O(r”)). This conflicts with the increasing
prevalence of large data sets involving thousands of observations. Clearly, standard spatial
statistical methods can become impractical for many realistic applications.

Fortunately, spatial autocorrelation usually declines with distance. Truncating the
influence of observations past a certain distance could greatly reduce the number of
relations (non-zero elements) needed to estimate the spatial regression. Mathematically,
sparse matrices can represent this situation. Sparse matrix techniques store only the non-
zero elements of a matrix and also avoid performing unnecessary computations on the zero
elements. This both reduces storage space and accelerates execution time.!

To illustrate the dramatic improvements possible, we computed a simultaneous
autoregression (SAR) using 20,640 observations. Each SAR likelihood function evaluation
requires computing the determinant of the 20,640 by 20,640 matrix. The sparsity of the
problem (.019% non-zero elements) makes it possible to compute ten evaluations of the
likelihood in under 19 minutes. Moreover, a dense solution to the problem would have
required storing around 3.4 gigabytes of data while the sparse solution to the problem used
just over one megabyte of memory.

To place these results into perspective, Li (1995) used a IBM RS6000 Model 550 and a
CMS5 parallel processing supercomputer to compute a 2500 observation SAR. The CM5
had 32 processors each with 32MB of local memory and four vector units. For a 2500 by
2500 spatial weight matrix the RS6000 required 8515.07 seconds while the CM5 required
48 seconds. Since computing determinants requires O(rn”) operations, the differences in

I See George and Liu (1981), Golub and Van Loan (1989), Press et al. (1988), and Saad (1996) for general
discussions of sparse matrix techniques.



size would require a factor of (20640/2500)> more operations, assuming no additional
bottlenecks. Given this size adjustment, the extrapolated computation times would go to
over 55 days for the RS6000 and 7.5 hours for the CM5 on the 20,640 by 20,640 problem.
Hence, personal computers with sparse technology can exceed supercomputer
performance for dense technology.

The tremendous gains in computing speed do not come at the expense of statistical
performance. For the simple model of California housing prices examined, the SAR
manages to achieve a median absolute error of 0.1084 while OLS produced a median
absolute error of 0.2101, almost twice as great.

Section II discusses the spatial autoregressive error estimator employed, section III
provides details on an improved algorithm for computing spatial estimators, section IV
estimates the resulting spatial error autoregression, while section V concludes with the key

results.
II. A Spatial Autoregressive Error Estimator

Section II.A describes the likelithood function for a spatial autoregressive error process.
This likelihood function depends critically upon D, the spatial weighting matrix. Hence,

section II.B describes D in more detail.
A. The Spatial Autoregressive Error Likelihood Function

When errors exhibit spatial autocorrelation, the simultaneous autoregression (SAR)
estimator corrects the usual prediction of the dependent variable, Y = X3 +¢€, by a

weighted average of the “deviations” ¥ — X3 on nearby observations as in (1),
Y=XB+aDY —-XpB) +& (1)

where D represents an n by n weighting matrix with Os on the diagonal (the observation
cannot predict itself) and non-negative oft-diagonals. To maintain the interpretation of a
weighted average, the rows of D sum to 1 as implied by (2) below. Such weighting matrices
are said to be row-standardized (Haining (1990, p. 82)). A non-zero entry in the jth column
of the ith row indicates that the jth observation will be used to adjust the prediction of the
ith observation (¢ # j). After correcting for these interactions, the SAR models assume the
residuals, €, are independently and normally distributed. These assumptions appear in (2).

(@ D [1] = [l

(n by n) (n by 1) (nby1)

b) diag(D)= [0
(b) diag(D) (n[by]l) @)

(© 0<a<l
(d) € ~N(0, 6°I)



The simultaneous autoregression (SAR) has the following log-likelihood function,
L(a,B,0%) = {In|[B| ~[nIn@na’) + 6*(Y ~XB'BY - X B (3)

where B equals (I —aD)'(I —aD) .2 To ensure the sum-of-squared errors, (Y —XB)' B(Y - Xp),
1s strictly positive, B must be positive definite. Given the definition of D, for 1>a 20,
12|B>0, and hence 02 1In|B|> . The maximum likelihood method efficiently estimates
the model asymptotically (given the assumptions hold).

Assuming the existence of the ML estimate, one could predict Y via (4).

Y = XB+aD(Y - XB) 4)
Furthermore, (4) leads to the estimated errors in (5).

Z=Y-Y =Y -XB -aDY -XB) =(I -aD)Y -XB) (5)

B. Specification of the Spatial Weight Matrix

The weight given to the census block groups for differencing depends upon their
proximity as measured by the latitude and longitude for each observation relative to all

other observations. Let d; represent the Euclidean distance between every pair of
observations i and j and let d,,., represent the distance between the ith observation and its

maxi

mth nearest neighbor. Moreover, let w; =1 if d; <d,,,,, and zero otherwise as stated by (6).

maxi

d.<d w. =1 (6)

P
7 HAX Yy

Naturally, this yields a weight of 1 for the census block group itself (d;=0)[[[!!! di1 !!!!-
change in galley] and 0 for each observation j more than d,,,,; distance from observation i.
Subsequently, in (7) we normalized the initial weights so that iD’f =1 thus making it into
71
zij

a standardized weight matrix.

D, = (7)

?j Hn
> W
J=1

i#j

In addition, we set D, =0, as assumed in (2), to prevent each observation from predicting
itself.
For the third observation, D might appear as,

2 For example, see Cressie (1993, p. 465). See Pace and Gilley (forthcoming) for an alternative application.
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D, 11610 =[0, .25, 0, 0, .25, 0, 0, 0, .25, 0, .25, 0,---,0].
Note, the third entry of D, .4, equals 0 while the row sums to 1.

II1. Computation of Spatially Autocorrelated Error Regressions

Examination of (3) shows the main barrier to speedy computation of the estimates lies
in the n by n nature of the spatial weighting matrix, D. In particular, computing |/ —aD|, a

determinant of an n by n matrix, requires substantial time for large n. Standard
determinant computations use O(n”) operations while multiplication of a n by n matrix and
an by p matrix uses O(n”p).3 Thus, the storage requirements, temporary or permanent, rise
with the square of n while the operation count rises with the cube of n. A problem with
many observations would quickly exhaust storage space or require impractical amounts of
computing time.

Fortunately, one can avoid such Herculean computational tasks. The spatial weighting
matrix D contains mainly Os and hence is sparse. The spatial weight matrix described in
I1.B uses the m nearest neighbors out of a possible n neighbors for each of the n
observations. Thus, mn non-zero entries exist out of a possible n* elements. A common
measure of matrix sparsity examines the number of non-zero elements of a matrix relative
to the total number of elements. Hence, the m nearest neighbor weighting matrix D has
proportionally m/n non-zero elements (i.e., 4/20640). D is quite sparse for this problem and
becomes progressively more sparse for large empirical applications.

This level of sparseness totally alters the number of operation counts needed for the
computation of determinants and matrix multiplication. The operation count depends
more upon the number of non-zero elements than the total number of elements.
Moreover, the sparse matrix procedures store only the non-zero elements and some form
of index. Hence, sparse matrix methods can make it possible to handle very large
applications.

Sparse methods fall into two basic categories, direct and iterative. Statisticians
commonly use iterative methods such as the conjugate gradient in the optimization of non-
linear problems. However, the conjugate gradient, as well as a host of other techniques
such as the Jacobi, successive overrelaxation, Krylov subspace methods, and so forth, also
have applications in linear systems. A very sparse matrix makes it extremely fast to
compute each iteration. Like any minimization (maximization) problem, the algorithms
need positive (negative) definite matrices to ensure a global solution. Moreover, the more
pronounced the positive (negative) definiteness, the faster convergence usually proceeds.
See Saad (1996) for more details.

3 See Golub and Van Loan (1989, p. 99).



Direct methods take advantage of blocks of zeros in the gaussian elimination process.
Hence, direct methods usually prefer contiguous groups of zeros in the matrix. Specific
patterns such as bandedness and bordered matrices have dedicated methods for their
solution (Press (1988, p. 72-74)). More general patterns require the use of factorization
methods such as the reverse Cuthill-McKee, minimum degree (followed here), and nested
dissection, to reorder the matrix for fast gaussian elimination (George and Liu (1981)).

Given the close connection of the determinant with gaussian elimination, computing
spatial autoregressions seems more suited to direct methods. A potential problem arises,
however, as the goal of reordering the matrix to maximize computation speed could
conflict with the ordering (pivoting) of the matrix to maximize numerical stability.
Fortunately, the structure of the problem leads to either diagonal dominance or symmetry.

Both situations have very favorable error properties and do not require pivoting.
Examination of (1 —aD) shows for a <1 the sum of the off-diagonal elements in each row is

less than the diagonal (1). Hence, for (I —aD)' the sum of the off-diagonal elements in each
column is less than the diagonal (1) and (I —aD)" is diagonal dominant. Since

(I —aD)| =|(I —aDy
reordering (Golub and Van Loan (1989, p. 119-120)). Also, we could compute

(I —aD) (I —aD)| =|(I ~aD)|(I ~aD) =2(I -a D)|. The symmetry and positive definiteness of
(I —aD)' (I —aD)| allows the use of the Cholesky decomposition which also does not need

, computing |( —aD)| sidesteps the error issues which arise from

pivoting to achieve numerical stability (George and Liu (1981, p. 9)).

We used the MATLAB programming language running on a 133Mhz Pentium
computer to generate the estimates. The sparse matrix formulation required only 1130
seconds to evaluate 10 iterations of the likelithood function. Each iteration involved
computing the determinant of a 20,640 by 20,640 matrix as well as various multiplications.
In addition, the storage of the matrix took somewhat over 1 megabyte whereas the full
matrix would have required 3.4 gigabytes of memory.

These speed increases coupled with decreases in storage requirements make the
estimation of large spatial problems practical. For medium and smaller problems it allows

users to jointly model other phenomenon of interest such as specification or simultaneity.
IV. Maximum Likelihood Sample Estimation of a Spatial Autoregression

This section illustrates the spatial autoregression estimator from section II using the
1990 census data. Section A discusses the model, section B presents the data, and section C

presents the actual estimation results.
A. Model

We fitted the following model:



In(MEDIAN VALUE)= INTERCEPT + B,MEDIAN INCOME+ [B,;MEDIAN INCOME? + 3,MEDIAN
INCOME® + B;In(MEDIAN(AGE)) + Bsln(TOTAL ROOMS/POPULATION) +
B,In(BEDROOMS/POPULATION) + B¢ In(POPULATION/HOUSEHOLDS)
Boln(HOUSEHOLDS) (8)

B. Data

We collected information on the variables in (8) using all the block groups in California
from the 1990 Census. In this sample a block group on average includes 1425.5 individuals
living in a geographically compact area. Naturally, the geographical area included varies
inversely with the population density. We computed distances among the centroids of each
block group as measured in latitude and longitude. We excluded all the block groups
reporting zero entries for the independent and dependent variables. The final data

contained 20,640 observations on 9 characteristics.
C. Maximum Likelihood Sample Estimation

Table 1 contains the sample estimates from using OLS and the SAR maximum
likelihood estimators. To emphasize the sparsity of the problem a priori we picked four
nearest neighbors to receive positive weights in the spatial weight matrix D. Based upon a
numerical search, the SAR maximum likelihood estimate of a was .8536.

Note the treatment by the two estimators of the AGE variable. OLS produces a positive
and significant estimate of the AGE variable with a ¢ statistic of 33.6133 while the maximum
likelihood SAR produces a negative, significant estimate with a ¢ statistic of -11.0942.4

Even when both estimators agree in terms of the direction of an effect, they may differ
in their implications concerning the functional form governing the effect. For example,
OLS arrives at a linear estimate of the effects of MEDIAN INCOME upon In(PRICE) with
negative quadratic and cubic effects. In contrast, the SAR estimate shows a positive linear
and quadratic effect of MEDIAN INCOME upon In(PRICE) with a negative cubic effect.

For many applications prediction error constitutes the main concern. In this respect
the SAR estimator greatly outperforms OLS. For example, the OLS sample R* was .6078
while for the SAR estimate the sample R* was .8536, a dramatically better goodness-of-fit.
Equally dramatic, the median absolute errors under OLS of .2101 fall by 48.4% to .1084
under the SAR estimator.

For other applications statistical inference constitutes the main concern. The presence
of such pervasive spatial autocorrelation completely invalidates the use of the usual ud
based OLS p-values. Indeed, the dramatic change in many of the ¢-values between the two

estimators emphasizes how conditional these are upon the assumed correlation structure.

4 See Pace and Gilley (1993) and Gilley and Pace (1995) for a discussion of priors in hedonic pricing models.
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V. Conclusion

Accurate prediction and correct inference in a spatial setting must use the information
contained in the errors on nearby observations. The canonical estimators available,
however, require order of n° computations. Given many applications must deal with
thousands of observations, this presents a substantial barrier to the adoption of the
standard spatial techniques. However, as a stylized fact, only the relations among nearby
observations matter greatly which means one can employ sparse matrix techniques to
achieve a great savings of both storage space and execution time.

As an 1llustration of the power of these techniques, the 20,640 observations employed
herein would have required the use of a matrix taking 3.4 gigabytes using normal dense
methods. The sparse matrix formulation of the problem dropped the storage space to just
above 1 megabyte. Finding the spatial maximum likelihood estimate required 10
likelihood evaluations each needing the computation of the determinant of a 20,640 by
20,640 matrix. This took under 19 minutes on a 133 megahertz Pentium computer.

As expected, incorporating the spatial information greatly reduced prediction errors.
For the simple model employed, the spatial estimator displayed a median absolute error
almost one-half less than OLS. Moreover, the dramatic shift in {-values between the two
estimators emphasized how conditional these are upon the assumed correlation structure.

The great gains produced by sparsity pose the question of what statistical factors lead to
sparsity. First, if the regression function performs perfectly, it will leave only white noise
and I would be the optimal spatial weight matrix. At the other extreme, a poor regression
function might produce slowly decaying correlated errors and greatly reduce the sparsity of
the spatial weight matrix. Often autocorrelated errors arise because of omitted variables.
For example, pollution from a factory might decline with the inverse of the squared
distance. Applying a model without a pollution independent variable might result in
correlated errors decaying with the inverse of the squared distance. Second, the span and
density of the data influence sparsity. An optimal spatial weighting matrix might include
more neighboring observations in predicting Hong Kong apartment rents than in
predicting suburban Houston apartment rents. On a national scale the neighboring
observations for any given apartment would occupy a small relative bandwidth relative to
the equivalent problem over one census tract. Sparsity of various forms arise in many
physical and electronic systems (Rice (1981, p. 25-28)).

The advent of geographical information systems which provide data sets of ever-
increasing size, the superior prediction as well as inference from spatial estimators using
this information, and the low-cost computation of spatial estimators using sparse matrices

have the potential to greatly increase the appeal of spatial estimators.
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Table 1 — OLS and SAR Estimates for Median Housing Prices Across 20,640

INTERCEPT
MEDIAN INCOME
MEDIAN INCOME?2
MEDIAN INCOME3
In (MEDIAN AGE)
In (TOTAL Rooms/
POPULATION)

In (BEDROOMS/
POPULATION)

In (POPULATION/
HOUSEHOLDS)

In (HOUSEHOLDS)

a

R2

Median |e|
Execution Time
Number of
Likelihood
Evaluations

California Census Block Groups

Bols

11.4939
0.4790
-0.0166
-0.0002
0.1570
-0.8582

0.8043

-0.4077

0.0477

0.6078
0.2101

tols

275.7518
45.7768
-9.4841
-1.9157
33.6123
-56.1280

38.0685

-20.8762

13.0792

Bsar

11.6637
0.0349
0.0100

-0.0007

-0.0421
0.3098

-0.1926

-0.0342

0.0034
0.8536

0.8594
0.1084
1130 seconds
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tsar

402.5925
4.7104
8.4280

-12.2444
-11.0942
24.5768

-11.8049

-2.3582

1.5569



