![]() | ![]() |
![]() |
| ||||||
|
|
|
|
R. Kelley Pace![]() |
LREC Endowed Chair of Real Estate |
Department of Finance, Louisiana State University |
Baton Rouge, LA 70803-6308 |
OFF: (225)-578-6256, FAX: (225)-578-6095 |
kelley@pace.am, www.spatial-statistics.com |
James P. LeSage |
Department of Economics, University of Toledo |
Toledo, OH 43606 |
www.spatial-econometrics.com |
KEYWORDS: spatial statistics, spatial autoregression, nearest neighbor, maximum likelihood, sparse matrices, log determinant bounds, matrix determinant approximations, doubly stochastic, spatial data mining.
![]() |
Definition 1. Let ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
![]() |
|||||||||||||
Define the overall spatial weight matrix ![]() ![]() ![]()
![]() |
|||||||||||||
where:
![]() |
|||||||||||||
Finally, let ![]() ![]() ![]() ![]() ![]() |
![]() ![]() | (3) |
![]() ![]() and ![]() ![]() ![]() ![]() ![]() ![]() ![]() Hence, ![]() ![]() |
|
For the lower bound, symmetry of ![]() ![]() ![]() ![]() ![]() Even powers have all nonnegative eigenvalues since ![]() ![]() ![]() ![]() ![]() ![]() ![]() Since the maximum value for ![]() ![]() ![]() ![]() ![]() |
|
In particular, ![]() ![]() ![]() However, ![]() ![]() Moreover, ![]() ![]() Hence, ![]() |
Since ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(4) |
![]() ![]() | (5) |
![]() ![]() | (6) |
![]() ![]() | (7) |
![]() |
![]() |
![]() | |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
Anselin, Luc (1988). Spatial Econometrics: Methods and Models. Dorddrecht: Kluwer Academic Publishers.
![]() |
|
Bapat, R.B., and T.E.S. Raghavan (1997). Nonnegative Matrices and Applications. Cambridge: Cambridge University Press.
![]() |
|
Barry, Ronald, and R. Kelley Pace (1999). A Monte Carlo Estimator of the Log Determinant of Large Sparse Matrices. Linear Algebra and its Applications 289, 41-54.
![]() |
|
Bavaud, Francois (1998). Models for Spatial Weights: A Systematic Look. Geographical Analysis 50, 155-171.
![]() |
|
Bell, Kathleen P., and Nancy E. Bockstael (2000). Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data. Review of Economics and Statistics 87, 72-82.
![]() |
|
Breiman, Leo and Jerome Friedman (1985). Estimating Optimal Transformations for Multiple Regression and Correlation. Journal of the American Statistical Association 80, 580-619.
![]() |
|
Breiman Leo, Jerome Friedman, R. Olshen, and C.J. Stone (1993). Classification and Regression Trees. New York: Chapman and Hall.
![]() |
|
Cressie, Noel (1993). Statistics for Spatial Data. New York: Wiley.
![]() |
|
Fan, Jianqing, Hui-Nien Hung, and Wing-Hung Wong (2000). Geometric Understanding of Likelihood Ratio Statistics. Journal of the American Statistical Association 95, 836-841.
![]() |
|
Gilley, O. W. and R. Kelley Pace (1996). On the Harrison and Rubinfeld Data. Journal of Environmental Economics and Management 31, 403-405.
![]() |
|
Griffith, Daniel (1988). Estimating Spatial Autoregressive Model Parameters with Commercial Statistical Packages. Geographical Analysis 20, 176-186.
![]() |
|
Griffith, Daniel, and F. Lagona (1998). On the Quality of Likelihood-based Estimators in Spatial Autoregressive Models when the Data Neighborhood Structure is Misspecified. Journal of Statistical Planning and Inference 69, 153-174.
![]() |
|
Griffith, Daniel and Akio Sone (1995). Trade-offs Associated with Normalizing Constant Computational Simplifications for Estimating Spatial Statistical Models. Journal of Statistical Computation and Simulation 51, p. 165-183.
![]() |
|
Judge, George, W.E. Griffiths, R. Carter Hill, Helmut Lütkepohl, and Tsoung-Chao Lee (1985). The Theory and Practice of Econometrics. New York: Wiley.
![]() |
|
Härdle, Wolfgang (1990). Applied Nonparametric Regression. Cambridge: Cambridge University Press.
![]() |
|
Harrison, D. and D.L. Rubinfeld (1978). Hedonic Prices and the demand for Clean Air. Journal of Environmental Economics and Management 5, 19-40.
![]() |
|
Krasker, William S., Edwin Kuh, and Roy E. Welch (1983). Estimation for Dirty Data and Flawed Models. Handbook of Econometrics. Amsterdam: North-Holland, 651-698.
![]() |
|
Lange, Nicholas and Louise Ryan (1989). Assessing Normality in Random Effects Models. Annals of Statistics 17, 624-42.
![]() |
|
Martin, R. (1993). Approximation to the Determinant in Gaussian Maximum Likelihood Estimation of Some Spatial Models. Communications in Statistics: Theory and Methods 22, 189-205.
![]() |
|
Pace, R. Kelley, and Ronald Barry (1997). Quick Computation of Regressions with a Spatially Autoregressive Dependent Variable. Geographical Analysis 29, 232-247.
![]() |
|
Pace, R. Kelley, and Dongya Zou (2000). Closed-Form Maximum Likelihood Estimates of Nearest Neighbor Spatial Dependence. Geographical Analysis 32, 154-172.
![]() |
|
Pollack, R.A., and T.J. Wales (1991). The Likelihood Dominance Criterion: A New Approach to Model Selection. Journal of Econometrics 47, 227-242.
![]() |
|
Streitberg, B. (1979). Multivariate Models of Dependent Spatial Data. Exploratory and Explanatory Statistical Analysis of Spatial Data, Edited by CPA Bartels and RH Ketellaper. Martinus Nijhoff, 139-177.
![]() |
|
Subramanian, Shankar and Richard T. Carson (1988). Robust Regression in the Presence of Heteroskedasticity. Advances in Econometrics 7. JAI Press, 85-138.
![]() |
|
Tiefelsdorf, M., Daniel Griffith, and Barry Boots (1999). A Variance Stabilizing Scheme for Spatial Link Matrices. Environment and Planning A 31, 165-180.
![]() |
Variables |
OLS |
Lower Bound |
Exact ML Lower |
Upper Bound |
![]() |
![]() |
ML |
Bound Weights |
ML |
CRIM |
-0.0118 |
-0.0072 |
-0.0069 |
-0.0067 |
ZN |
0.0001 |
0.0004 |
0.0004 |
0.0004 |
INDUS |
0.0002 |
0.0009 |
0.0010 |
0.0011 |
CHAS |
0.0921 |
0.0146 |
0.0114 |
0.0077 |
NOX ![]() |
-0.6372 |
-0.2524 |
-0.2346 |
-0.2161 |
RM ![]() |
0.0063 |
0.0072 |
0.0072 |
0.0073 |
AGE |
0.0001 |
-0.0004 |
-0.0005 |
-0.0005 |
LDIS |
-0.1978 |
-0.1643 |
-0.1616 |
-0.1599 |
LRAD |
0.0896 |
0.0592 |
0.0574 |
0.0560 |
TAX |
-0.0004 |
-0.0003 |
-0.0003 |
-0.0003 |
PTRATIO |
-0.0296 |
-0.0092 |
-0.0083 |
-0.0073 |
B |
0.0004 |
0.0003 |
0.0003 |
0.0003 |
LSTAT |
-37.4895 |
-23.3274 |
-22.4674 |
-21.7632 |
![]() |
0 |
0.5150 |
0.5400 |
0.5650 |
Log like |
-700.35 |
-584.4019 |
-580.1425 |
-576.7777 |
Variables |
OLS |
Restricted |
Lower |
Restricted |
Upper |
Restricted |
![]() |
![]() |
Log Like |
Bound |
Log Like |
Bound |
Log Like |
Land Area |
-0.0025 |
-264,834 |
-0.0003 |
-227,572 |
0.0003 |
-224,099 |
Pop |
0.0253 |
-261,261 |
0.0200 |
-227,373 |
0.0189 |
-224,098 |
Income |
0.6628 |
-282,537 |
0.6471 |
-244,844 |
0.6400 |
-239,264 |
Age |
-0.1338 |
-260,785 |
-0.1337 |
-228,754 |
-0.1326 |
-225,448 |
![]() |
![]() |
![]() |
0.8850 |
-260,176 |
0.9850 |
-260,176 |
![]() |
93 |
![]() |
93 |
![]() |
93 |
![]() |
![]() |
0 |
![]() |
23 |
![]() |
23 |
![]() |
Unrestricted |
![]() |
-260,176 |
![]() |
-227,218 |
![]() |
-223,995 |
Log Like |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Variables |
OLS |
Restricted |
Lower |
Restricted |
Upper |
Restricted |
![]() |
![]() |
Log Like |
Bound |
Log Like |
Bound |
Log Like |
Land Area |
-0.0850 |
-271,195 |
-0.0177 |
-232,756 |
-0.0082 |
-230,914 |
Pop |
0.1146 |
-267,184 |
0.0195 |
-232,526 |
0.0142 |
-230,803 |
Income |
1.0837 |
-288,183 |
0.4840 |
-246,472 |
0.4358 |
-240,730 |
Age |
-0.1269 |
-267,093 |
-0.0763 |
-233,199 |
-0.0700 |
-231,408 |
![]() |
0 |
![]() |
0.7750 |
-266,505 |
0.8150 |
-266,505 |
![]() |
5 |
![]() |
5 |
![]() |
5 |
![]() |
![]() |
0 |
![]() |
23 |
![]() |
23 |
![]() |
Unrestricted |
![]() |
-266,505 |
![]() |
-232,456 |
![]() |
-230,764 |
Log Like |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() |